Skip to main content

Advertisement

Log in

Abstract

The uptake of fluorine-18 fluorodeoxyglucose (FDG) is increased in processes with enhanced glycolysis, including malignancy. It is this property of FDG which is exploited in positron emission tomography (PET) imaging for lymphoma. FDG, whilst a good oncology tracer, is not perfect and there are limitations to its use. FDG may have low uptake in some types of lymphoma, predominantly low-grade lymphomas. High physiological uptake may occur within the bowel, urinary tract, muscle, salivary glands and lymphoid tissue. FDG is not specific for malignancy and increased uptake occurs in benign conditions with increased glycolysis such as infection, inflammation and granulomatous disease. Benign conditions usually have lower uptake than malignancy but there is overlap. These limitations of FDG mean that tumour may be 'missed', 'masked' or 'mimicked' by other pathology. These limitations are described in this article and methods to circumvent them where possible are discussed. These include performing baseline scans at presentation with lymphoma for comparison with post-treatment scans, simple manoeuvres to reduce physiological uptake such as administration of frusemide and diazepam and remaining alert to the possibility of alternative pathology in immunosuppressed patients. Patients with disease secondary to human immunodeficiency virus are a particular challenge in this regard as they often have dual or multiple pathology. One of the most important skills in PET reporting may be to recognise its limitations and be clear when a definitive answer cannot be given to the referring clinician's question. This may require using PET to direct the clinician to biopsy the site most likely to yield the correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8A–D.
Fig. 9.
Fig. 10.
Fig. 11A, B.
Fig. 12A, B.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19A, B.
Fig. 20A, B.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

References

  1. Warburg O. The metabolism of tumors. New York: Richard R. Smith; 1931:129.

  2. O'Doherty MJ, MacDonald E, Barrington SF, Mikhaeel NG, Schey S. Positron emission tomography in the management of lymphomas. Clin Oncol 2002; 14:415–426.

    Article  CAS  Google Scholar 

  3. Jerusalem G, Warland V, Najjar F, Paulus P, Fassotte MF, Fillet G, Rigo P. Whole-body18F-FDG PET for the evaluation of patients with Hodgkin's disease and non-Hodgkins lymphoma. Nucl Med Commun 1999; 20:13–20.

    CAS  PubMed  Google Scholar 

  4. Newman J, Francis IR, Kaminski M, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-d-glucose: correlation with CT. Radiology 1994; 190:111–116.

    CAS  PubMed  Google Scholar 

  5. Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med 1998; 25:721–728.

    CAS  PubMed  Google Scholar 

  6. Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H. Uptake of carbon -11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study. J Nucl Med 1991; 32:1211–1218.

    PubMed  Google Scholar 

  7. Jerusalem G, Beguin Y, Najjar F, Hustinx R, Fassotte MF, Rigo P, Fillet G. Positron emission tomography (PET) with18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin's lymphoma (NHL). Ann Oncol 2001; 12:825–830.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffman E, Kletter K, Diemling M, Becherer A, Pfeffel F, Petkov V. Positron emission tomography with fluorine-18-2-fluoro-2-deoxy-d-glucose (F18-FDG) does not visualise extranodal B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT)-type. Ann Oncol 1999; 10:1185–1189.

    Article  CAS  PubMed  Google Scholar 

  9. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin's disease. Ann Oncol 1998; 9:1117–1122.

    CAS  PubMed  Google Scholar 

  10. Carr R, Barrington SF, Madan B, O'Doherty MJ, Saunders CA, van der Walt J, Timothy AR. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998; 91:3340–3346.

    PubMed  Google Scholar 

  11. Lapela M, Leskinen S, Minn HR, et al. Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. Blood 1995; 86:3522–3527.

    CAS  PubMed  Google Scholar 

  12. O'Doherty MJ, Marsden PK. Being equipped for clinical PET. Lancet 2000; 356:1701–1703.

    Article  CAS  Google Scholar 

  13. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, Fillet G. Whole-body positron emission tomography using18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin's disease. Haematologica 2001; 86:266–273.

    CAS  PubMed  Google Scholar 

  14. Miyauchi T, Wahl RL. Regional18F-fluoro-2-deoxy-d-glucose uptake varies in normal lung. Eur J Nucl Med 1996; 23:517–523.

    CAS  PubMed  Google Scholar 

  15. Lodge M, Lucas J, Marsden P, Cronin B, O'Doherty MJ, Smith M. A PET study of18FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26:22–30.

    Article  PubMed  Google Scholar 

  16. Lowe V, DeLong D, Hoffman J, Coleman R. Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med 1995; 36:883–887.

    CAS  PubMed  Google Scholar 

  17. Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest 1998; 114:1105–1111.

    CAS  PubMed  Google Scholar 

  18. Kubota K, Itoh M, Ozaki K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med 2001; 28:696–703.

    PubMed  Google Scholar 

  19. Weber W, Ziegler S, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999; 40:1771–1777.

    CAS  PubMed  Google Scholar 

  20. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, Alavi A. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26:1345–1348.

    CAS  PubMed  Google Scholar 

  21. Cremerius U, Effert PJ, Adam G, et al. FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 1998; 39:815–822.

    CAS  PubMed  Google Scholar 

  22. Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998; 91:4464–4471.

    CAS  PubMed  Google Scholar 

  23. Mikhaeel NG, Timothy AR, Hain SF, O'Doherty MJ. 18-FDG-PET for the assessment of residual masses on CT following treatment of lymphomas. Ann Oncol 2000; 11 Suppl 1:147–150.

    Google Scholar 

  24. Larcos G, Maisey MN. FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun 1996; 17:197–198.

    CAS  PubMed  Google Scholar 

  25. O'Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer C. PET scanning and the human immunodeficiency virus positive patient. J Nucl Med 1997; 38:1575–1583.

    CAS  PubMed  Google Scholar 

  26. Wahl RL, Henry C, Ethier S. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-d-glucose in rodents with mammary carcinoma. Radiology 1992; 183:643–647.

    CAS  PubMed  Google Scholar 

  27. Zhao S, Kuge Y, Tsukamoto E, et al. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur J Nucl Med 2001; 28:730–735.

    Google Scholar 

  28. Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 1996; 26:308–314.

    CAS  PubMed  Google Scholar 

  29. Miraldi F, Vesselle H, Faulhaber PF, Adler LP, Leisure GP. Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med 1998; 23:3–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon BA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR 1997; 169:1675–1680.

    CAS  Google Scholar 

  31. Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999; 26:1363–1378.

    Article  CAS  PubMed  Google Scholar 

  32. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996; 37:1127–1129.

    CAS  PubMed  Google Scholar 

  33. Hany TF, Gharehpapagh E, Kamel E, Buck A, Himms-Hagen J, Von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med 2002; 29:1393–1398.

    Article  Google Scholar 

  34. Stokkel MP, Bongers V, Hordijk GJ, van Rijk PP. FDG positron emission tomography in head and neck cancer: pitfall or pathology? Clin Nucl Med 1999; 24:950–954.

    CAS  PubMed  Google Scholar 

  35. Jacobsson H, Celsing F, Ingvar M, Stone-Elander S, Larsson SA. Accumulation of FDG in axillary sweat glands in hyperhidrosis: a pitfall in whole-body PET examination. Eur Radiol 1998; 8:482–483.

    Article  CAS  PubMed  Google Scholar 

  36. Alibazoglu H, Alibazoglu B, Hollinger EF, Ingram SA, Willoughby WA, LaMonica G, Ali A. Normal thymic uptake of 2-deoxy-2[F-18]fluoro-d-glucose. Clin Nucl Med 1999; 24:597–600.

    Article  CAS  PubMed  Google Scholar 

  37. Nakahara T, Fujii H, Ide M, et al. FDG uptake in the morphologically normal thymus: comparison of FDG positron emission tomography and CT. Br J Radiol 2001; 74:821–824.

    CAS  PubMed  Google Scholar 

  38. Brink I, Reinhardt M, Hoegerle S, Altehoefer C, Moser E, Nitzsche E. Increased metabolic activity in the thymus gland studied with18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 2001; 42:591–595.

    CAS  PubMed  Google Scholar 

  39. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998; 16:173–180.

    CAS  PubMed  Google Scholar 

  40. Sugawara Y, Zasadny KR, Kison PV, Baker LH, Wahl RL. Splenic fluorodeoxyglucose uptake increased by granulocyte colony-stimulating factor therapy: PET imaging results. J Nucl Med 1999; 40:1456–1462.

    CAS  PubMed  Google Scholar 

  41. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998; 16:603–609.

    CAS  PubMed  Google Scholar 

  42. Bakheet S, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998; 1998:352–358.

    Google Scholar 

  43. Zhuang H, Alavi A. 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002; 32:47–59.

    PubMed  Google Scholar 

  44. Shon IH, O'Doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med 2002; 34:240–271.

    Article  Google Scholar 

  45. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 1996; 23:1409–1415.

    CAS  PubMed  Google Scholar 

  46. McGuirt W, Greven K, Williams D, Keyes J, Watson N, Cappellari J, Geisinger KR. PET scanning in head and neck oncology: a review. Head and Neck 1998; 20:208–215.

    Article  PubMed  Google Scholar 

  47. Rosenfeld S, Hoffman E, Coleman RE, Glantz M, Hanson MW, Schold S. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography. J Nucl Med 2002; 33:532–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally F. Barrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrington, S.F., O'Doherty, M.J. Limitations of PET for imaging lymphoma. Eur J Nucl Med Mol Imaging 30 (Suppl 1), S117–S127 (2003). https://doi.org/10.1007/s00259-003-1169-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1169-2

Keywords

Navigation