Skip to main content

Advertisement

Log in

Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Until recently, gallium-67 scintigraphy (GS) has been the best available functional imaging modality for evaluating patients with non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). The diagnostic accuracy of GS in detecting lymphoma is based on optimisation of the imaging protocol, knowledge of potential physiological and benign sites of 67Ga uptake, and the Ga avidity characteristics of the individual lymphoma. As 67Ga is a tumour viability agent, the role of GS is primarily at follow-up. A residual mass persisting on CT after treatment poses a common clinical dilemma: it may indicate the presence of viable lymphoma, which requires further treatment, or it can be benign, consisting of only fibrotic and necrotic tissues. GS can successfully differentiate between these conditions. Routine follow-up with GS may allow early diagnosis of recurrence and early institution of treatment. Reversion of a positive GS to a negative test, and the rapidity with which this occurs has a high predictive value for the outcome of the individual patient. Lymphoma showing a normal GS early during treatment has a better prognosis than lymphoma with persistence of pathological findings. Other tumour-seeking single-photon emitting agents, such as thallium-201, technetium-99m methoxyisobutylisonitrile and indium-111 octreotide, have been investigated in lymphoma, primarily as an alternative to GS in specific clinical settings, but are of limited value. The role of radioimmunoscintigraphy is gaining importance in conjunction with radioimmunotherapy. Fluorine-18 fluorodeoxyglucose (FDG) imaging of lymphoma using either dedicated or camera-based PET systems is gradually replacing GS for assessment of lymphoma. FDG overcomes some of the limitations of GS while sharing its tumour viability characteristics. The extensive clinical knowledge and experience accumulated over three decades with GS in lymphoma provides a solid background as well as a model for the assessment of new functional imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a, b.
Fig. 4a–d.

Similar content being viewed by others

References

  1. Edwards CL, Hayes RL. Tumor scanning with67Ga citrate. J Nucl Med 1969; 10:103–105.

    Google Scholar 

  2. Andrews GA, Edwards CL. Tumor scanning with gallium 67. JAMA 1975; 233:1100–1103.

    Google Scholar 

  3. Turner DA, Fordham EW, Ali A, et al. Gallium-67 imaging in the management of Hodgkin's disease and other malignant lymphomas. Semin Nucl Med 1978; 8:205–218.

    Google Scholar 

  4. Bekerman C, Hoffer PB, Bitran JD. The role of gallium-67 in the clinical evaluation of cancer. Semin Nucl Med 1984; 14:296–322.

    Google Scholar 

  5. Iosilevsky G, Front D, Bettman L, et al. Uptake of gallium-67 citrate and (2-3H)deoxyglucose in the tumor model, following chemotherapy and radiotherapy. J Nucl Med 1985; 26:278–282.

    Google Scholar 

  6. Canellos GP. Residual mass in lymphoma may not be residual disease [editorial]. J Clin Oncol 1988; 6:931–933.

    Google Scholar 

  7. Front D, Israel O, Ben-Haim S. The dilemma of a residual mass in treated lymphoma: the role of gallium-67 scintigraphy. In: Freeman LM, ed. Nuclear medicine annual, 1991. New York: Raven Press; 1991:211–220.

  8. McLaughlin AF, Magee MA, Greenough R, et al. Current role of gallium scanning in the management of lymphoma. Eur J Nucl Med 1990; 16:755–771.

    Google Scholar 

  9. Kaplan WD. Residual mass and negative gallium scintigraphy in treated lymphoma: when is the gallium scan really negative [editorial]. J Nucl Med 1990; 31:369–371.

    Google Scholar 

  10. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999; 17:1244–1253.

    Google Scholar 

  11. Front D, Bar-Shalom R, Mor M, et al. Hodgkin disease: prediction of outcome with67Ga scintigraphy after one cycle of chemotherapy. Radiology 1999; 210:487–491.

    Google Scholar 

  12. Front D, Bar-Shalom, Mor M, et al. Aggressive non-Hodgkin lymphoma: early prediction of outcome with67Ga scintigraphy. Radiology 2000; 214:253–257.

  13. Janicek M, Kaplan W, Neuberg D, et al. Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin's lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol 1997; 15:1631–1637.

    Google Scholar 

  14. Weeks JC, Yeap BY, Canellos G, et al. Value of follow-up procedures in patients with large-cell lymphoma who achieve a complete remission. J Clin Oncol 1991; 9:1196–1203.

    Google Scholar 

  15. Front D, Bar-Shalom R, Epelbaum R, et al. Early detection of lymphoma recurrence with gallium-67 scintigraphy. J Nucl Med 1993; 34:2101–2104.

    Google Scholar 

  16. Zinzani PL, Magagnoli M, Franchi R, et al. Diagnostic role of gallium scanning in the management of lymphoma with mediastinal involvement. Haematologica 1999; 84:604–607.

    Google Scholar 

  17. Bartold SP, Donohoe KJ, Flecher JW, et al. Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. J Nucl Med 1997; 38:990–994.

    Google Scholar 

  18. Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med 2000; 20:150–185.

    Google Scholar 

  19. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999; 94:429–433.

    Google Scholar 

  20. Zinzani PL, Magagnoli M, Chierichetti F, et al. The role of positron emission tomography (PET) in management of lymphoma patients. Ann Oncol 1999; 10:1181–1184.

    Google Scholar 

  21. Bar-Shalom R, Mor M, Yefremov N, et al. The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment. Semin Nucl Med 2001; 31:177–190.

    Google Scholar 

  22. Kostakoglu L, Goldsmith SJ. Positron emission tomography in lymphoma: comparison with computed tomography and gallium-67 single photon emission computed tomography. Clin Lymphoma 2000; 1:67–74.

    Google Scholar 

  23. Kostakoglu L, Leonard JP, Kuji I, et al. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 2002; 94:879–888.

    Google Scholar 

  24. Bar-Shalom R, Yefremov N, Haim N, et al. Camera-based PET using F18-fluorodeoxyglucose and gallium-67 SPECT in the evaluation of lymphoma–a comparative study. Radiology 2003, in press.

  25. Tatsumi M, Kitayama H, Sugahara H, et al. Whole-body hybrid PET with18F-FDG in the staging of non-Hodgkin's lymphoma. J Nucl Med 2001; 42:601–608.

    Google Scholar 

  26. Front D, Israel O. The role of Ga-67 scintigraphy in evaluating the results of therapy of lymphoma patients. Semin Nucl Med 1995; 25:60–71.

    Google Scholar 

  27. Zinzani PL, Zompatori M, Bendandi M, et al. Monitoring bulky mediastinal disease with gallium-67, CT-scan and magnetic resonance imaging in Hodgkin's disease and high-grade non-Hodgkin's lymphoma. Leuk Lymphoma 1996; 22:131–135.

    Google Scholar 

  28. Even-Sapir E, Bar-Shalom R, Israel O, et al. Single-photon emission computed tomography quantitation of gallium citrate uptake for the differentiation of lymphoma from benign hilar uptake. J Clin Oncol 1995; 13:942–946.

    Google Scholar 

  29. Horn NL, Ray GR, Kriss JP. Gallium-67 citrate scanning in Hodgkin's disease and non-Hodgkin's lymphoma. Cancer 1976; 37:250–257.

    Google Scholar 

  30. Brown ML, O'Donnel JB, Thrall JH, et al. Gallium-67 scintigraphy in untreated and treated non-Hodgkin lymphomas. J Nucl Med 1978; 19:875–879.

    Google Scholar 

  31. Anderson KC, Leonard RCF, Canellos GP, et al. High dose gallium imaging in lymphoma. Am J Med 1983; 75:327–331.

    Google Scholar 

  32. Gallamini A, Biggi A, Fruttero A, et al. Revisiting the prognostic role of gallium scintigraphy in low-grade non-Hodgkin's lymphoma. Eur J Nucl Med 1997; 24:1499–1506.

    Google Scholar 

  33. Ben-Haim S, Bar-Shalom R, Israel O, et al. Utility of gallium-67 scintigraphy in low-grade non-Hodgkin's lymphoma. J Clin Oncol 1996; 14:1936–1942.

    Google Scholar 

  34. Sandrock D, Lastoria S, Magrath IT, et al. The role of gallium-67 tumor scintigraphy in patients with small, non-cleaved cell lymphoma. Eur J Nucl Med 1993; 20:119–122.

    Google Scholar 

  35. Nejmeddine F, Raphael M, Martin A, et al.67Ga scintigraphy in B-cell non-Hodgkin's lymphoma: correlation of 67Ga uptake with histology and transferrin receptor expression. J Nucl Med 1999; 40:40–45.

    Google Scholar 

  36. Hoffer P. Gallium: mechanisms. J Nucl Med 1980; 21:282–285.

  37. Sohn MH, Jones BJ, Whiting JH, et al. Distribution of gallium-67 in normal and hypotransferrinemic tumor-bearing mice. J Nucl Med 1993; 34:2135–2143.

    Google Scholar 

  38. Bradely WP, Alderson PO, Eckelman WC, et al. Decreased tumor uptake of gallium-67 in animals after whole-body irradiation. J Nucl Med 1978; 19:204–209.

    Google Scholar 

  39. Chilton HM, Witcofski RL, Watson NE, et al. Alteration of gallium-67 distribution in tumor-bearing mice following treatment with methotrexate: concise communication. J Nucl Med 1981; 22:1064–1068.

    Google Scholar 

  40. Bekerman C, Pavel DG, Bitran J, et al. The effect of inadvertent administration of antineoplastic agents prior to Ga-67 injection: concise communication. J Nucl Med 1984; 25:430–435.

    Google Scholar 

  41. Van Leeuwen-Stock EA, Jankhoff AR, Visser-Platier AWJ, et al. Cell cycle dependency of67gallium uptake and cytotoxicity in human cell lines of hematological malignancies. Leuk Lymphoma 1998; 31:533–544.

    Google Scholar 

  42. Wylie BR, Southee AE, Joshua DE, et al. Gallium scanning in the management of mediastinal Hodgkin's disease. Eur J Haematol 1989; 42:344–347.

    Google Scholar 

  43. Tumeh SS, Rosental DS, Kaplan WD, et al. Lymphoma: evaluation with Ga-67 SPECT. Radiology 1987; 164:111–114.

    Google Scholar 

  44. Front D, Israel O, Epelbaum R, et al. Ga-67 SPECT before and after treatment of lymphoma. Radiology 1990; 175:515–519.

    Google Scholar 

  45. Tan TXL, Gelfand MJ. Ga-67 scintigraphy in pediatric patients comparison of extended SPECT of the chest and abdomen with planar imaging. Clin Nucl Med 1996; 21:717–719.

    Google Scholar 

  46. Israel O, Keidar Z, Iosilevsky G, et al. The fusion of anatomic and physiologic imaging. Semin Nucl Med 2001, 31:191–205.

    Google Scholar 

  47. Israel O, Yefremov N, Mor M, Haim N, Gaitini D, Epelbaum R, Dann EJ, Keidar Z, Guralnik L, Front D. A new technology of combined transmission (CT) and emission (67Ga) tomography (TET) in the evaluation of patients with lymphoma [abstract]. J Nucl Med 2000; 41:70p.

    Google Scholar 

  48. Chajari M, Lacroix J, Peny AM, et al. Gallium-67 scintigraphy in lymphoma: is there a benefit of image fusion with computed tomography? Eur J Nucl Med Mol Imaging 2002; 29:380–387.

    Google Scholar 

  49. Rehm PK. Radionuclide evaluation of patients with lymphoma. Radiol Clin North Am 2001; 39:957–978.

    Google Scholar 

  50. Nelson B, Hayes RL, Edwards CL, et al. Distribution of gallium in human tissues after intravenous administration. J Nucl Med 1971; 13:92–99.

    Google Scholar 

  51. Israel O, Front D. Benign mediastinal and parahilar uptake of gallium-67 in treated lymphoma: do we have all the answers? J Nucl Med 1993; 34:1330–1332.

    Google Scholar 

  52. Chapman PE, Groshar D, Hooper HR, et al. Does gallium uptake in the pulmonary hila predict involvement by non-Hodgkin's lymphoma? Nucl Med Commun 1992; 13:730–737.

    Google Scholar 

  53. Frohlich DEC, Chen JL, Neuberg D, et al. When is hilar uptake of67Ga-citrate indicative of residual disease after CHOP chemotherapy? J Nucl Med 2000; 41:269–274.

    Google Scholar 

  54. Waxman AD, Goldsmith MS, Greif PM, et al. Differentiation of tumor versus sarcoidosis using Tl-201 in patients with hilar and mediastinal adenopathy [abstract]. J Nucl Med 1987; 28:561.

    Google Scholar 

  55. Kaplan WD, Southee AE, Annese ML, et al. Evaluating low and intermediate grade non-Hodgkin's lymphoma (NHL) with gallium-67 (Ga) and thallium-201 (Tl) imaging [abstract]. J Nucl Med 1990; 31:793.

    Google Scholar 

  56. Harris EW, Rakow JI, Weiner M, et al. Thallium-201 scintigraphy for assessment of a gallium-67-avid mediastinal mass following therapy for Hodgkin's disease. J Nucl Med 1993; 34:1326–1330.

    Google Scholar 

  57. Kostakoglu L, Yeh SDJ, Portlock C, et al. Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin's disease in the mediastinum. J Nucl Med 1992; 33:345–350.

    Google Scholar 

  58. Peylan-Ramu N, Haddy TB, Jones E, et al. High frequency of benign mediastinal uptake of gallium-67 after completion of chemotherapy in children with high-grade non-Hodgkin's lymphoma. J Clin Oncol 1989; 7:1800–1806.

    Google Scholar 

  59. Hibi S, Todo S, Imashuku S. Thymic localization of gallium-67 in pediatric patients with lymphoid and nonlymphoid tumors. J Nucl Med 1987; 28:293–297.

    Google Scholar 

  60. Kissin CM, Husband JE, Nicholas D, et al. Benign thymic enlargement in adults after chemotherapy: CT demonstration. Radiology 1987; 163:67–70.

    Google Scholar 

  61. Ford EG, Lockhart SK, Sullivan MP, et al. Mediastinal mass following chemotherapeutic treatment of Hodgkin's disease: recurrent tumor or thymic hyperplasia? J Pediatr Surg 1987; 22:1155–1159.

    Google Scholar 

  62. Drossman SR, Schiff RG, Kronfeld GD, et al. Lymphoma of the mediastinum and neck: evaluation with Ga-67 imaging and CT correlation. Radiology 1990; 174:171–175.

    Google Scholar 

  63. Rossleigh MA, Murray IPC, Mackay DWJ, et al. Pediatric solid tumors: evaluation by gallium-67 SPECT studies. J Nucl Med 1990; 31:168–172.

    Google Scholar 

  64. Choyke PL, Zeman RK, Gootenberg JE, et al. Thymic atrophy and regrowth in response to chemotherapy: CT evaluation. AJR 1987; 149:269–272.

    Google Scholar 

  65. Luker GD, Siegel MJ. Mediastinal Hodgkin disease in children: response to therapy. Radiology 1993; 189:737–740.

    Google Scholar 

  66. Bar-Shalom R, Israel O, Haim N, et al. Diffuse lung uptake of Ga-67 after treatment of lymphoma: Is it of clinical importance? Radiology 1996; 199:473–476.

    Google Scholar 

  67. Hays RL, Nelson B, Swartzendruber DC, et al. Gallium-67 localization in rat and mouse tumors. Science 1970; 167:289–290.

    Google Scholar 

  68. Larson SM. Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med 1978; 8:193–203.

    Google Scholar 

  69. Larson SM, Rasey JS, Allen DR, et al. A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 1979; 20:837–842.

    Google Scholar 

  70. Larson SM, Rasey JS, Allen DR, et al. Common pathway for tumor cell uptake of gallium-67 and iron-59 via a transferrin receptor. J Natl Cancer Inst 1980; 64:41–53.

    Google Scholar 

  71. Chen DC, Newman B, Turkall RM, et al. Transferrin receptors and gallium-67 uptake in-vitro. Eur J Nucl Med 1982; 7:536–540.

    Google Scholar 

  72. Harris AW, Sephton RG. Transferrin promotion of67Ga and 59Fe uptake by cultured mouse myeloma cells. Cancer Res 1977; 37:3634–3638.

    Google Scholar 

  73. Chitambar CR, Zivkovic Z. Uptake of Gallium-67 by human leukemic cells: demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res 1987; 47:3929–3934.

    Google Scholar 

  74. Nejmeddine F, Caillat-Vigneron N, Escaig F, et al. Mechanism involved in gallium-67 (Ga-67) uptake by human lymphoid cell lines. Cell Mol Biol 1998; 44:1215–1220.

    Google Scholar 

  75. Feremans W, Bujan W, Neve P, et al. CD71 phenotype and the value of gallium imaging in lymphomas. Am J Haematol 1991; 36:215–216.

    Google Scholar 

  76. Tsan MF, Scheffel U. Mechanism of gallium-67 accumulation in tumors. J Nucl Med 1986; 27:1215–1219.

    Google Scholar 

  77. Weiner RE, Schreiber GJ, Hoffer PB. In vitro transfer of Ga-67 from transferrin to ferritin. J Nucl Med 1983; 24:608–614.

    Google Scholar 

  78. Habeshow JA, Lister TA, Stanfeld AG, et al. Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma. Lancet 1983; 1:498–501.

    Google Scholar 

  79. Medeiros LJ, Picker LJ, Horning SJ, et al. Transferrin receptor expression by non-Hodgkin's lymphomas. Correlation with morphologic grade and survival. Cancer 1988; 61:1844–1851.

    Google Scholar 

  80. Das Gupta A, Shah V. Correlation of transferrin receptor expression with histologic grade and immunophenotype in chronic lymphocytic leukemia and non-Hodgkin's lymphoma. Hematol Pathol 1990; 4:37–41.

    Google Scholar 

  81. Castellino RA. Diagnostic imaging evaluation of Hodgkin's disease and non-Hodgkin's lymphoma. Cancer 1991; 67:1177–1180.

    Google Scholar 

  82. Devizzi L, Maffioli L, Bonfante V, et al. Comparison of gallium scan, computed tomography, and magnetic resonance in patients with mediastinal Hodgkin's disease. Ann Oncol 1997; 8 Suppl 1:53–56.

    Google Scholar 

  83. Karimjee S, Brada M, Husband J, et al. A comparison of gallium-67 single photon emission computed tomography and computed tomography in mediastinal Hodgkin's disease. Eur J Cancer 1992; 28A:1856–1857.

    Google Scholar 

  84. Delcambre C, Reman O, Henry-Amar M, et al. Clinical relevance of gallium-67 scintigraphy in lymphoma before and after therapy. Eur J Nucl Med 2000; 27:176–184.

    Google Scholar 

  85. Johnston GS, Go MF, Benua RS, et al. Gallium-67 citrate imaging in Hodgkin's disease: final report of cooperative group. J Nucl Med 1977; 18:692–698.

    Google Scholar 

  86. Andrews GA, Hubner KF, Greenlaw RH. Gallium-67 citrate imaging in malignant lymphoma: final report of cooperative group. J Nucl Med 1978; 19:1013–1019.

    Google Scholar 

  87. Jochelson MS, Herman TS, Stomper PC, et al. Planning mantle radiation therapy in patients with Hodgkin disease: role of gallium-67 scintigraphy. Am J Roentgenol 1988; 151:1229–1231.

    Google Scholar 

  88. Waxman AD, Eller D, Ashok G, et al. Comparison of gallium-67-citrate and thallium-201 scintigraphy in peripheral and intrathoracic lymphoma. J Nucl Med 1996; 37:46–50.

    Google Scholar 

  89. Hussain R, Christie DR, Gebski V, et al. The role of gallium scan in primary extranodal lymphoma. J Nucl Med 1998; 39:95–98.

    Google Scholar 

  90. Moog F, Bagerter M, Diedrichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 1998; 206:475–481.

    Google Scholar 

  91. Bar-Shalom R, Israel O, Epelbaum R, et al. Gallium-67 scintigraphy in lymphoma with bone involvement. J Nucl Med 1995; 36:446–450.

    Google Scholar 

  92. Israel O, Mekel M, Bar-Shalom R, et al. Bone lymphoma: Ga-67 scintigraphy and CT for prediction of outcome after treatment. J Nucl Med 2002; 43:1295–1303.

    Google Scholar 

  93. Moog F, Bagerter M, Kotzerke J, et al. 18-F-fluorodeoxyglucose positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 1998; 16:603–609.

    Google Scholar 

  94. Stomper PC, Choleweinsky SP, Park J, et al. Abdominal staging of thoracic Hodgkin's disease: CT-lymphangiography–Ga-67 scanning correlation. Radiology 1993; 187:381–386.

    Google Scholar 

  95. Israel O, Front D, Epelbaum R, et al. Residual mass and negative gallium scintigraphy in treated lymphoma. J Nucl Med 1990; 31:365–368.

    Google Scholar 

  96. Coiffier B. How to interpret the radiological abnormalities that persist after treatment in non-Hodgkin's lymphoma patients? Ann Oncol 1999; 10:1141–1143.

    Google Scholar 

  97. Hagemeister FB, Purugganan R, Podoloff DA, et al. The gallium scan predicts relapse in patients with Hodgkin's disease treated with combined modality therapy. Ann Oncol 1994; 5 Suppl 2:59–63.

    Google Scholar 

  98. Coiffier B, Gisslbrecht C, Vose JM, et al. Prognostic factors in aggressive malignant lymphomas: description and validation of a prognostic index that could identify patients requiring a more intensive therapy. J Clin Oncol 1991; 9:211–219.

    Google Scholar 

  99. Hagemeister FB. Treatment of relapsed aggressive lymphomas: regimens with and without high-dose therapy and stem cell rescue. Cancer Chemother Pharmacol 2002; 49 (Suppl):S13–S20.

    Google Scholar 

  100. Cooper DL, Caride VJ, Zloty M, et al. Gallium scans in patients with mediastinal Hodgkin's disease treated with chemotherapy. J Clin Oncol 1993; 11:1092–98.

    Google Scholar 

  101. Radford JA, Cowan RA, Flanagan M, et al. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin's disease. J Clin Oncol 1988; 6:940–946.

    Google Scholar 

  102. Zinzani PL, Monetti N, Zompatori M, et al. Importance of gallium scan restaging for curative treatment of mediastinal lymphomas. Haematologica 2001; 86:1229–1230.

    Google Scholar 

  103. Gossot D, Girard P, de-Kerviler E, et al. Thoracoscopy or CT-guided biopsy for residual intrathoracic masses after treatment of lymphoma. Chest 2001; 120:289–294.

    Google Scholar 

  104. Gasparini M, Bombadieri E, Castellani M, et al. Gallium-67 scintigraphy evaluation of therapy in Non-Hodgkin's lymphoma. J Nucl Med 1998; 39:1586–1590.

    Google Scholar 

  105. Israel O, Front D, Lam M, et al. Gallium 67 imaging in monitoring lymphoma response to treatment. Cancer 1988; 61:2429–2443.

    Google Scholar 

  106. Front D, Ben-Haim S, Israel O, et al. Lymphoma: predictive value of Ga-67 scintigraphy after treatment. Radiology 1992; 182:359–363.

    Google Scholar 

  107. Vose JM, Bierman PJ, Anderson JR, et al. Single-photon emission computed tomography gallium imaging versus computed tomography: predictive value in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1996; 14:2473–2479.

    Google Scholar 

  108. Zinzani PL, Martelli M, Magagnoli M, et al. Treatment and clinical management of primary mediastinal large B-cell lymphoma with sclerosis: MACOP-B regimen and mediastinal radiotherapy monitored by67gallium scan in 50 patients. Blood 1999; 94:3289–3293.

    Google Scholar 

  109. Weiner M, Leventhal B, Cantor A, et al. Gallium-67 scans as an adjunct to computed tomography scans for the assessment of a residual mediastinal mass in pediatric patients with Hodgkin's disease. Cancer 1991; 68:2478–2480.

    Google Scholar 

  110. King SC, Reiman RJ, Prosnitz LR. Prognostic importance of restaging gallium scans following induction chemotherapy for advanced Hodgkin's disease. J Clin Oncol 1994; 12:306–311.

    Google Scholar 

  111. Brenot-Rossi I, Bouabdallah R, Di Stefano D, et al. Hodgkin's disease: prognostic role of gallium scintigraphy after chemotherapy. Eur J Nucl Med 2001; 28:1482–1488.

    Google Scholar 

  112. Ha CS, Choe JG, Kong JS, et al. Agreement rates among single photon emission computed tomography using gallium-67, computed axial tomography and lymphangiography for Hodgkin disease and correlation of image finding with clinical outcome. Cancer 2000; 89:1371–1379.

    Google Scholar 

  113. Salloum E, Brandt DS, Caride VJ, et al. Gallium scans in the management of patients with Hodgkin's disease: a study of 101 patients. J Clin Oncol 1997; 15:518–527.

    Google Scholar 

  114. Bogart JA, Chung CT, Mariados NF, et al. The value of gallium imaging after therapy for Hodgkin's disease. Cancer 1998; 82:754–759.

    Google Scholar 

  115. Armitage JO, Weisenburger DD, Hutchins M, et al. Chemotherapy for diffuse large-cell lymphoma—rapidly responding patients have more durable remissions. J Clin Oncol 1986; 4:160–164.

    Google Scholar 

  116. Kaplan WD, Jochelson MS, Herman TS, et al. Gallium-67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large-cell lymphoma. J Clin Oncol 1990; 8:1966–1970.

    Google Scholar 

  117. Kirn D, Mauch P, Shaffer K, et al. Large-cell and immunoblastic lymphoma of the mediastinum: prognostic features and treatment outcome in 57 patients. J Clin Oncol 1993; 11:1336–1343.

    Google Scholar 

  118. Israel O, Mor M, Epelbaum R, et al. Clinical pretreatment risk factors and Ga-67 scintigraphy early during treatment for prediction of outcome of patients with aggressive non-Hodgkin lymphoma. Cancer 2002; 94:873–878.

    Google Scholar 

  119. Waxman AD. Thallium-201 in nuclear oncology. In: Freeman L, ed. Nuclear medicine annual, 1991. New York: Raven; 1991:193–209.

  120. Piwnica Worms D, Holman BL: Noncardiac applications of hexakis (alkylisonitrile) technetium 99m complexes. J Nucl Med 1990, 31:1166–1167.

    Google Scholar 

  121. Aktolun C, Bayhan H, Kir M: Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors, preliminary results and comparison with Tl-201. Clin Nucl Med 1992; 17:171–176.

    Google Scholar 

  122. Sessler MJ, Geck P, Maud FD, et al. New aspects of cellular Tl-201 uptake: cotransport is the central mechanism of ion uptake. Nuklearmedizin 1986; 25:24–27.

    Google Scholar 

  123. Ando A, Ando I, Katayama M, et al. Biodistribution of Tl-201 in tumor bearing animals and inflammatory lesion induced animals. Eur J Nucl Med 1987; 12:567–572.

    Google Scholar 

  124. Crane P, Laliberte R, Heminway S, et al. Effect of mitochondrial viability and metabolism on technetium 99m sestamibi myocardial retention. Eur J Nucl Med 1993; 20:20–25.

    Google Scholar 

  125. Chiu ML, Kronange JF, Piwnica Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutyl isonitrile) technetium in cultured mouse fibroblasts. J Nucl Med 1990; 31:1646–1653.

    Google Scholar 

  126. Kapucu OL, Skyuz C, Vural G, et al. Evaluation of therapy response in children with untreated lymphoma using technetium-99m sestamibi. J Nucl Med 1997; 38:243–247.

    Google Scholar 

  127. Ziegels P, Nocaudie M, Huglo D, et al. Comparison of technetium-99m methoxybutylisonitrile and gallium-67 citrate scanning in the assessment of lymphoma. Eur J Nucl Med 1995; 22:126–131.

    Google Scholar 

  128. Mattern J, Volm M. Multiple pathway drug resistance [review]. Int J Oncol 1993; 2:557–561.

    Google Scholar 

  129. Piwnica Worms D, Chiu ML, Budding M, et al. Functional imaging of multidrug resistant P-glycoprotein with an organo-technetium complex. Cancer Res 1993; 53:977–984.

    Google Scholar 

  130. Tsai SC, Shiau YC, Wang JJ, et al. Comparison of the uptake and clearance of Tc-99m MIBI, Tl-201 and Ga-67 in drug-resistant lymphoma cell lines. Cancer Lett 2001; 171:147–152.

    Google Scholar 

  131. Dimitrakopolou-Strauss A, Strauss LG, Goldschmidt H, et al. Evaluation of tumour metabolism and multidrug resistance in patients with treated malignant lymphoma. Eur J Nucl Med 1995; 22:434–442.

    Google Scholar 

  132. Wirtzig TE, Letendre L, Gerstner J, et al. Evaluation of a somatostatin analog in the treatment of lymphoproliferative disorders: results of a phase II north central cancer treatment group trial. J Clin Oncol 1995; 13:2012–2015.

    Google Scholar 

  133. Reubi JC, Laissue J, Krenning EP, et al. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implication. J Steroid Biochem Mol Biol 1992; 43:27–35.

    Google Scholar 

  134. Hiruma K, Koike T, Nakamura H, et al. Somatostatin receptors on human lymphocytes and leukemia cells. Immunology 1990; 11:480–485.

    Google Scholar 

  135. Reubi J, Waser B, Horisberger U, et al. In vitro autoradiographic and in vivo scintigraphic localization of somatostatin receptors in human lymphatic tissue. Blood 1993; 82:2143–2151.

    Google Scholar 

  136. Reubi JC, Waser B, VanHagen M, et al. In vitro and in vivo detection of somatostatin receptors in human malignant lymphomas. Int J Cancer 1992; 50:895–900.

    Google Scholar 

  137. Leners N, Jamar F, Fiasse R, et al. Indium-111-pentreotide uptake in endocrine tumors and lymphoma. J Nucl Med 1996; 37:916–922.

    Google Scholar 

  138. Lipp RW, Silly H, Ranner G, et al. Radiolabeled octreotide for the demonstration of somatostatin receptors in malignant lymphoma and lymphadenopathy. J Nucl Med 1995; 36:13–18.

    Google Scholar 

  139. Vanhagen PM, Krenning EP, Reubi JC, et al. Somatostatin analogue scintigraphy of malignant lymphomas. Br J Haematol 1993; 83:75–79.

    Google Scholar 

  140. Bong SB, VanderLaan JG, Louwes H, et al. Clinical experience with somatostatin receptor imaging in lymphoma. Semin Oncol 1994; 21 (Suppl 13):46–50.

    Google Scholar 

  141. Anker-Luktenburg PJ, Krenning EP, Oei HY, et al. Somatostatin receptor scintigraphy in the initial staging of Hodgkin's disease. Br J Haematol 1996; 93:96–103.

    Google Scholar 

  142. Anker-Lutkenburg PJ, Lowenberg B, Lamberts SWJ, et al. The relevance of somatostatin receptor expression in malignant lymphomas. Metabolism 1996, 45 (Suppl 1):96–97.

    Google Scholar 

  143. Goldsmith SJ, Macapinlac HA, O'Brien JP. Somatostatin-receptor imaging in lymphoma. Semin Nucl Med 1995; 25:262–271.

    Google Scholar 

  144. Lugtenburg PJ, Lowenberg B, Valkemma R, et al. Somatostatin receptor scintigraphy in the initial staging of low-grade non-Hodgkin's lymphoma. J Nucl Med 2001; 42:222–229.

    Google Scholar 

  145. Sarda L, Duet M, Zini JM, et al. Indium-111 pentreotide scintigraphy in malignant lymphomas. Eur J Nucl Med 1995; 22:1105–1109.

    Google Scholar 

  146. Goldenberg DM. Perspectives on oncologic imaging with radiolabeled antibodies. Cancer 1997; 80:2431–2435.

    Google Scholar 

  147. Murthy S, Sharkey RM, Goldenberg DM, et al. Lymphoma imaging with a new technetium-99m labeled antibody, LL2. Eur J Nucl Med 1992; 19:394–401.

    Google Scholar 

  148. Baum RP, Niesen A, Hertel A, et al. Initial clinical results with technetium-99m labeled LL2 monoclonal antibody fragment in the radioimmunodetection of B-cell lymphomas. Cancer 1994; 73:896–899.

    Google Scholar 

  149. Blend MJ, Hyun H, Kozloff M, et al. Improved staging of B-cell non-Hodgkin's lymphoma patients with Tc-99m labeled LL2 monoclonal antibody fragment. Cancer Res (Suppl) 1995; 55:5764s–5770s.

    Google Scholar 

  150. Becker WS, Behr TM, Cumme F, et al. Ga-67 citrate versus Tc-99m labeled LL2-Fab (anti-CD22) fragments in the staging of B-cell Non-Hodgkin's lymphoma. Cancer Res (Suppl) 1995; 55:5771s–5773s.

    Google Scholar 

  151. Goldenberg DM, Horowitz JA, Sharkey RM, et al. Targeting dosimetry and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL-2 monoclonal antibody. J Clin Oncol 1991; 9:548–564.

    Google Scholar 

  152. Kramer EL, Volm M, Donahue B, et al. Tc-99m LL-2 Fab monoclonal antibody imaging in acquired immune deficient syndrome-related lymphoma. Cancer 1997; 80:2469–2477.

    Google Scholar 

  153. Samoszuk MK, Anderson AL, Ramzi E, et al. Radioimmunodetection of Hodgkin's disease and non-Hodgkin's lymphomas with monoclonal antibody to eosinophil peroxidase. J Nucl Med 1993; 34:1246–1253.

    Google Scholar 

  154. Zuckier LS, DeNardo GL. Trials and tribulations: oncological antibody imaging comes to the fore. Semin Nucl Med 1997; 25:10–29.

    Google Scholar 

  155. Kaminski MS, Zasadny KR, Francis IR, et al. Radioimmunotherapy of B-cell lymphoma with I-131 anti-B1 (anti-CD20) antibody. N Engl J Med 1993; 329:459–465.

    Google Scholar 

  156. Press OW, Eary JF, Appelbaum FR, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993; 329:1219–1224.

    Google Scholar 

  157. Kaminski MS, Zasadny KR, Francis IR, et al. Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol 1996; 14:1974–1981.

    Google Scholar 

  158. Israel O, Iosilevsky G, Front D et al. SPECT quantitation of iodine-131 concentration in phantoms and human tumors. J Nucl Med 1990; 31:1945–1949.

    Google Scholar 

  159. Koral KF, Dewaraja Y, Li J, et al. Initial results for hybrid SPECT-conjugate-view tumor dosimetry in I-131 anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 2000; 41:1579–1586.

    Google Scholar 

  160. Koral KF, Lin S, Fessler JA, et al. Preliminary results from intensity-based CT-SPECT fusion in I-131 anti-B1 monoclonal-antibody therapy of lymphoma. Cancer 1997; 80:2538–2540.

    Google Scholar 

  161. Koral K, Li J, Dewajara Y, et al. I-131 anti-B1 therapy/tracer uptake ratio using a new procedure for fusion of tracer images to computed tomography images. Clin Cancer Res 1999; 5:3004s–3009s.

    Google Scholar 

  162. Scott AM, Macapinlac H, Zhang JJ, et al. Clinical applications of fusion imaging in oncology. Nucl Med Biol 1994; 21:775–784.

    Google Scholar 

  163. Coiffier B. Positron emission tomography and gallium metabolic imaging in lymphoma. Curr Oncol Rep 2001; 3:266–270.

    Google Scholar 

  164. Rifai AA, Bazarbashi S, Kandil A. Positron emission tomography in Hodgkin's disease: correlation with computed tomography and gallium 67 citrate imaging [abstract]. Clin Positron Imaging 2000; 3:179.

    Google Scholar 

  165. Shen YY, Kao A, Yen RF. Comparison of18F-fluoro-2-deoxygluose positron emission tomography and gallium-67 citrate scintigraphy for detecting malignant lymphoma. Oncol Rep 2002; 9:321–325.

    Google Scholar 

  166. Wirth A, Seymour JF, Hicks RJ, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin's disease and non-Hodgkin's lymphoma. Am J Med 2002; 112:262–268.

    Google Scholar 

Download references

Acknowledgement

The authors wish to dedicate this paper to their teacher and mentor, Professor Dov Front, MD, PhD. His pioneering work on the role of nuclear medicine as a functional imaging modality for monitoring response to treatment and prediction of outcome has been best illustrated in the numerous contributions on the value of 67Ga scintigraphy for the evaluation of lymphoma. These contributions represent the model for present and future studies assessing the clinical value of a new generation of functional imaging techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ora Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Even-Sapir, E., Israel, O. Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur J Nucl Med Mol Imaging 30 (Suppl 1), S65–S81 (2003). https://doi.org/10.1007/s00259-003-1164-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1164-7

Keywords

Navigation