Skip to main content
Log in

The electrodynamic response of heavy-electron materials with magnetic phase transitions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We have investigated the electrodynamic response of the heavy-electron compounds U2Zn17, UPd2Al3, UCu5 and URu2Si2. Particular emphasis has been devoted to the optical evidence of the antiferromagnetic phase transitions at TN = 9.7 K, 14 K, 15 K and 17 K for U2Zn17, UPd2Al3, UCu5 and URu2Si2, respectively. In the excitation spectrum of UCu5 and URu2Si2, we found an absorption in the far-infrared, which develops below TN and is ascribed to the excitation across a spin-density-wave type gap, suggesting that the antiferromagnetic phase transition might be itinerant in nature, and invokes a Fermi surface instability. Since this gap-like feature is absent in U2Zn17 and UPd2Al3, we argue that these latter compounds belong to a characteristically different class of antiferromagnets, representative of the heavy-electron compounds with an ordering of essentially localized magnetic moments. The antiferromagnetic ordering then leads to a suppression of the spin-flip mechanism below TN. At low temperatures, we observe for all compounds the formation of a narrow Drude-like resonance in the optical conductivity, which is ascribed to the electrodynamic response of the heavy-quasiparticles, and is indicative of the progressive development of the manybody coherent Kondo state, coexisting with both types of magnetic ordering. In this review, we also present the evolution of the optical properties due to Ni- and Redoping in UCu5 and URu2Si2, respectively. The optical evidence of the itinerant antiferromagnetic ordering is suppressed in both compounds upon doping and particularly for the URu2Si2 compound this is consistent with a crossover to a ferromagnetic ground state upon Re-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb, B.C., Sievers, A.J., Mihalisin, T.: Phys. Rev. Lett. 57, 1951 (1986)

  2. Marabelli, F., Travaglini, G., Wachter, P.: Solid State Commun. 59, 381 (1986)

  3. Sulewski, P.E. Sievers, A.J., Maple, M.B., Torikachvili, M.S., Smith, J.L., Fisk, Z.: Phys. Rev. B38, 5338 (1988)

  4. Marabelli, F., Wachter, P., Walker, E.: Solid State Commun. 67, 931 (1988)

  5. Awasthi, A.W., Beyerman, W., Carini, J.P., Gruner, G.: Phys. Rev. B39, 2377 (1989)

  6. Marabelli, F., Wachter, P.: Phys. Rev. B42, 3307 (1990)

  7. Marabelli, F., Wachter, P.: Physica B163, 224 (1990)

  8. Awasthi, A.M., Degiorgi, L., Güner, G., Dalichaouch, Y., Maple, M.B.: Phys. Rev. B48, 10692 (1993)

  9. Lee, P.A., Millis, A.J.: Phys. Rev. B35, 3394 (1987)

  10. Fukuyama, H.: in: Theory of heavy fermions and valence band fluctuations, p. 209. Kasuya, T., Saso, T. (eds.). Berlin, Heidelberg, New York: Springer 1985

  11. Ott, H.R., Rudigier, H., Delsing, P., Fisk, Z.: Phys. Rev. Lett. 52, 1551 (1984)

    Google Scholar 

  12. Ott, H.R., Rudigier, H., Felder, E., Fisk, Z., Batlogg, B.: Phys. Rev. Lett. 55, 1595 (1985)

    Google Scholar 

  13. Grewe, N., Steglich, F.: in: Handbook on the Physics and Chemistry of rare earths, Vol. 14. Gschneider, K.A., Eyring, L., (eds.). Amsterdam: Elsevier 1991

  14. Fisk, Z., Hess, D.W., Pethick, C.J., Pines, D., Smith, J.L., Thompson, J.D., Willis, J.O.: Science 239,33 (1988); Ott, H.R.: J. Mod. Phys. B6, 473 (1992)

  15. Maple, M.B., Chen, J.W., Dalichaouch, Y., Kohara, T., Rossel, C., Torikachvili, M.S.: Phys. Rev. Lett. 56, 185 (1986)

    Google Scholar 

  16. Geibel, C., Thies, S., Kaczorowski, D., Mehner, A., Grauel, A., Seidel, B., Ahlheim, U., Helfrich, R., Petersen, K., Bredl, C.D., Steglich, F.: Z. Phys. 83, 305 (1991)

    Google Scholar 

  17. Geibel, C., Schank, C., Thies, S., Kitazawa, H., Bredl, C.D., Boehm, A., Rau, M., Grauel, A., Caspary, R., Helfrich, R., Ahlheim, U., Weber, G., Steglich, F.: Z. Phys. B 84, 1 (1991)

    Google Scholar 

  18. Murasik, A., Ligenza S., Zygmunt, A.: Phys. Status Solidi a23, K163 (1974)

  19. Schenck, A., Birrer, P., Gygax, F.N., Hilti, B., Lippelt, E., Weber, M., Boeni, P., Fischer, P., Ott, H.R. Fisk, Z.: Phys. Rev. Lett. 65, 2454 (1990)

    Google Scholar 

  20. Kjems, J.K., Broholm, C.: J. Magn. Magn. Mater. 76-77,371 (1988)

  21. Krimmell, A., Loidl, A., Roessli, B., Doenni, A., Kita, H., Sato, N., Endoh, Y., Komatsubara, T., Geibel, C., Steglich, F.: Solid State Commun. 87, 829 (1993)

  22. Schenck, A., Amato, A., Birrer, P., Gygax, F.N., Hitti, B., Lippelt, E., Barth, S., Ott, H.R., Fisk, Z.: J. Magn. Magn. Mater. 108, 97 (1992)

    Google Scholar 

  23. Bernsconi, A., Mombelli, M., Fisk, Z., Ott, H.R.: Z. Phys. B94, 423 (1994)

  24. Palstra, T.T.M., Menovsky, A.A., Mydosh, J.A.: Phys. Rev. B33, 6527 (1986)

  25. Barker Jr. A.S., Halperin, B.I., Rice, T.M.: Phys. Rev. Lett. 20, 384 (1968)

    Google Scholar 

  26. Ott, H.R., Fisk, Z.: Handbook on the physics and chemistry of the actinides p. 85. (Eds.) A.J. Freeman and G.H. Lauder Elsevier Science Publishers B.V. (1987)

  27. Dalichaouch, Y., Maple, M.B., Torikachvili, M.S., Giorgi, A.L.: Phys. Rev. B39, 2433 (1989)

  28. Bonn, D.A., Garrett, J.D., Timusk, T.: Phys. Rev. Lett. 61,1305 (1988)

    Google Scholar 

  29. Overhauser, A.W.: Phys. Rev. 128, 1437 (1962)

    Google Scholar 

  30. Degiorgi, L., Dressel, M., Grüner, G., Wachter, P., Sato, N., Komatsubara, T.: Europhys. Lett. 25, 311 (1994)

    Google Scholar 

  31. Degiorgi, L., Ott, H.R., Dressel, M., Gruner, G., Fisk, Z.: Europhys. Lett. 26, 221 (1994)

    Google Scholar 

  32. Thieme, St., Steiner, P., Degiorgi, L., Wachter, P., Dailchaouch, Y., Maple, M.B.: Europhys. Lett. 32, 367 (1995) and Europhys. lett. 32, 783 (1995) (Erratum)

  33. Klein, O., Donovan, S., Dressel, M., Gruner, G.: Int. J. Infrared Millimeter Waves 14, 2423 (1993); Donovan, S., Klein, O., Dressel, M., Holczer, K., Gruner, G.: ibid 14, 2459 (1993); Dressel, M., Klein, O., Donovan, S., Gruner, G.: ibid 14, 2489 (1993)

  34. Degiorgi, L., Ott, H.R., Dressel, M., Grüner, G., Geibel, C., Steglich, F., Fisk, Z.: Physica B206-207, 441 (1995)

  35. Dalichaouch, Y., de Andrade, M.C., Maple, M.B.: Phys. Rev. B46, 8671 (1992)

  36. Awasthi, A.M., Beyermann, W.P., Carini, J.P., Gruner, G.: Phys. Rev. B39, 2377 (1989)

  37. Sulewski, P.E., Sievers, A.J.: Phys. Rev. Lett. 63, 2000 (1989)

  38. Beyermann, W.P., Gruner, G.: Phys. Rev. Lett. 63, 2001 (1989)

  39. Wooten, F.: Optical properties of solids. New York: Academic Press 1972

  40. Sandratskii, L.M., Kübler, J., Zahn, P., Mertig, L: Phys. Rev. B50, 15834 (1994)

  41. Uemura, Y.J., Luke, G.M.: Physica B186-188, 223 (1993)

  42. Inada, Y., Ishiguro, A., Kimura, J., Sato, N., Sawada, A., Komatsubara, T., Yamagami, H.: Physica B206-207, 33 (1995)

  43. Cao, N., Garrett, J.D., Timusk, T., Liu, H.L., Tanner, D.B.: Phys. Rev. B53, 2601 (1996)

  44. The reader should note that the SDW single particle gap (which is missing in σ1(ω) of UPd2Al3 and U2Zn17) should not be confused with the gap of about 80 K (or 40 K in [35]) evaluated from the analysis of the p(T) measurement below TN. The latter corresponds to the gap in the magnon dispersion relation and has nothing to do with the gap which should open at the Fermi surface as consequence of a SDW instability. See, e.g., Ref. 35 and Bakker, K., de Visser, A., Tai, L.T., Menovsky, A.A., Franse, J.J.M.: Solid State Commun. 86, 497 (1993)

  45. Elliott, R.J., Wedgwood, F.A.: Proc. Phys. Soc. 81, 846 (1963)

    Google Scholar 

  46. Cox, D.E., Shirane, G., Shapiro, S.M., Aeppli, G., Fisk, Z., Smith, J.L., Kjems, J., Ott, H.R.: Phys. Rev. B33, 3614 (1986)

  47. Hasselbach, K., Kirtley, J.R., Lejay, P.: Physica B186-188, 201 (1993)

  48. Nowack, A., Naidyuk, Yu.G., Chubov, P.N., Yanson, I.K., Menkovsky, A.: Z. Phys. B88, 295 (1992)

  49. Cao, N., Garrett, J.D., Timusk, T.: Physica B191, 263 (1993) 50. Tinkham, M.: Introduction to superconductivity. Krieger, R.E. (ed.). New York: McGraw-Hill 1975

  50. Gruner, G.: Density waves in solids. Reading, Mass: AddisonWesley 1994

  51. Degiorgi, L., Dressel, M., Schwartz, A., Alavi, B., Gruner, G.: Phys. Rev. Lett. 76, 3838 (1996)

    Google Scholar 

  52. Caspary, R., Hellmann, P., Keller, M., Sparn, G., Wassilew, C., Koehler, R., Geibel, C., Schank, C., Steglich, F., Phillips, N.E.: Phys. Rev. Lett. 71, 2146 (1993)

    Google Scholar 

  53. Takahashi, T., Sato, N., Yokoya, T., Chainani, A., Morimoto, T., Komatsubara, T.: J. Phys. Soc. Jpn. 65, 156 (1996)

    Google Scholar 

  54. Gor'kov, L.P.: Europhys. Lett. 16, 301 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degiorgi, L., Thieme, S., Ott, H. et al. The electrodynamic response of heavy-electron materials with magnetic phase transitions. Z. Phys. B 102, 367–380 (1997). https://doi.org/10.1007/s002570050300

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002570050300

Navigation