Skip to main content
Log in

Microinstability of the hip: a systematic review of the imaging findings

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

To undertake a systematic review of the morphologic features associated with hip microinstability and determine whether there are suggestive or diagnostic imaging findings.

Methods

Four electronic databases were searched up to September 2019 to identify original research reporting morphologic features in individuals with either a clinical diagnosis of hip microinstability (instability without overt subluxation/dislocation) or those with symptomatic laxity demonstrated on imaging (increased femoral head translation/distraction or capsular volume). Studies focussing on individuals with pre-existing hip conditions (including definite dysplasia (lateral centre edge angle < 20°), significant trauma, previous dislocation or surgery were excluded. Methodological quality was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 tool.

Results

Twenty-two studies met inclusion criteria (clinical diagnosis of microinstability n = 15 and demonstration of laxity n = 7). Imaging information gathered from the studies includes radiographs (n = 14), MRI (n = 6), MR arthrography (n = 4), CT (n = 1) and intraoperative examination. Most studies exhibited design features associated with an overall high or unclear risk of bias. Some dysplastic features are associated with microinstability or laxity reference measures; however, microinstability is frequently diagnosed in those with a lateral centre edge angle > 25°. Other associated imaging findings reported include impingement morphology, anterior labral tearing, femoral head chondral injury, ligamentum teres tears and capsular attenuation.

Conclusions

The current literature does not provide strong evidence for imaging features diagnostic of microinstability. In the appropriate clinical context, dysplastic morphology, anterior labral tears and ligamentum teres tears may be suggestive of this condition although further research is needed to confirm this.

PROSPERO registration

CRD42019122406

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harris JD, Slikker W, Abrams GD, Nho SJ. Atraumatic instability and surgical technique. Hip Arthrosc Hip Joint Preservation Surg. 2015:1001–14.

  2. Canham CD, Yen Y, Giordano BD. Does femoroacetabular impingement cause hip instability? A systematic review. Arthroscopy. 2016;32(1):203–8.

    PubMed  Google Scholar 

  3. Dangin A, Tardy N, Wettstein M, May O, Bonin N. Microinstability of the hip: a review. Orthop Traumatol: Surg & Res. 2016;102(8):S301–9.

    CAS  Google Scholar 

  4. Safran MR. Microinstability of the hip-gaining acceptance. JAAOS-J Am Acad Orthop Surg. 2019;27(1):12–22.

    Google Scholar 

  5. Shindle MK, Ranawat AS, Kelly BT. Diagnosis and management of traumatic and atraumatic hip instability in the athletic patient. Clin Sports Med. 2006;25(2):309–26 ix.

    PubMed  Google Scholar 

  6. Shu B, Safran MR. Hip instability: anatomic and clinical considerations of traumatic and atraumatic instability. Clin Sports Med. 2011;30(2):349–67.

    PubMed  Google Scholar 

  7. Kalisvaart MM, Safran MR. Hip instability treated with arthroscopic capsular plication. Knee Surg Sports Traumatol Arthrosc. 2017;25(1):24–30.

    PubMed  Google Scholar 

  8. Akiyama K, Sakai T, Koyanagi J, Yoshikawa H, Sugamoto K. Evaluation of translation in the normal and dysplastic hip using three-dimensional magnetic resonance imaging and voxel-based registration. Osteoarthr Cartil. 2011;19(6):700–10.

    CAS  Google Scholar 

  9. Akiyama K, Sakai T, Koyanagi J, Yoshikawa H, Sugamoto K. In vivo hip joint contact distribution and bony impingement in normal and dysplastic human hips. J Orthop Res. 2013;31(10):1611–9.

    PubMed  Google Scholar 

  10. Sato T, Tanino H, Nishida Y, Ito H, Matsuno T, Banks SA. Dynamic femoral head translations in dysplastic hips. Clin Biomech. 2017;46:40–5.

    Google Scholar 

  11. Jacobsen S, Sonne-Holm S, Soballe K, Gebuhr P, Lund B. Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop. 2005;76(2):149–58.

    PubMed  Google Scholar 

  12. Wilkin GP, Ibrahim MM, Smit KM, Beaulé PE. A contemporary definition of hip dysplasia and structural instability: toward a comprehensive classification for acetabular dysplasia. J Arthroplast. 2017;32(9):S20–7.

    Google Scholar 

  13. Kraeutler MJ, Garabekyan T, Pascual-Garrido C, Mei-Dan O. Hip instability: a review of hip dysplasia and other contributing factors. Muscles Ligaments Tendons J. 2016;6(3):343.

    PubMed  PubMed Central  Google Scholar 

  14. Mayer SW, Abdo JCM, Hill MK, Kestel LA, Pan Z, Novais EN. Femoroacetabular impingement is associated with sports-related posterior hip instability in adolescents: a matched-cohort study. Am J Sports Med. 2016;44(9):2299–303.

    PubMed  Google Scholar 

  15. Wassilew GI, Janz V, Heller MO, Tohtz S, Rogalla P, Hein P, et al. Real time visualization of femoroacetabular impingement and subluxation using 320-slice computed tomography. J Orthop Res. 2013;31(2):275–81.

    PubMed  Google Scholar 

  16. Steppacher SD, Albers CE, Siebenrock KA, Tannast M, Ganz R. Femoroacetabular impingement predisposes to traumatic posterior hip dislocation. Clin Orthop Relat Res. 2013;471(6):1937–43.

    PubMed  PubMed Central  Google Scholar 

  17. Kolo FC, Charbonnier C, Pfirrmann CW, Duc SR, Lubbeke A, Duthon VB, et al. Extreme hip motion in professional ballet dancers: dynamic and morphological evaluation based on magnetic resonance imaging. Skelet Radiol. 2013;42(5):689–98.

    Google Scholar 

  18. Duthon VB, Charbonnier C, Kolo FC, Magnenat-Thalmann N, Becker CD, Bouvet C, et al. Correlation of clinical and magnetic resonance imaging findings in hips of elite female ballet dancers. Arthroscopy. 2013;29(3):411–9.

    PubMed  Google Scholar 

  19. Charbonnier C, Kolo FC, Duthon VB, Magnenat-Thalmann N, Becker CD, Hoffmeyer P, et al. Assessment of congruence and impingement of the hip joint in professional ballet dancers: a motion capture study. Am J Sports Med. 2011;39(3):557–66.

    PubMed  Google Scholar 

  20. Han S, Alexander JW, Thomas VS, Choi J, Harris JD, Doherty DB, et al. Does capsular laxity lead to microinstability of the native hip? Am J Sports Med. 2018;46(6):1315–23.

    PubMed  Google Scholar 

  21. Crawford MJ, Dy CJ, Alexander JW, Thompson M, Schroder SJ, Vega CE, et al. The 2007 Frank Stinchfield Award: the biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res. 2007;465:16–22.

    PubMed  Google Scholar 

  22. Myers CA, Register BC, Lertwanich P, Ejnisman L, Pennington WW, Giphart JE, et al. Role of the acetabular labrum and the iliofemoral ligament in hip stability: an in vitro biplane fluoroscopy study. Am J Sports Med. 2011;39(Supplement 1):85–91.

    Google Scholar 

  23. Wuerz TH, Song SH, Grzybowski JS, Martin HD, Mather RC III, Salata MJ, et al. Capsulotomy size affects hip joint kinematic stability. Arthroscopy. 2016;32(8):1571–80.

    PubMed  Google Scholar 

  24. Domb BG, Philippon MJ, Giordano BD. Arthroscopic capsulotomy, capsular repair, and capsular plication of the hip: relation to atraumatic instability. Arthroscopy. 2013;29(1):162–73.

    PubMed  Google Scholar 

  25. Smith MV, Sekiya JK. Hip instability. Sports Med Arthrosc Rev. 2010;18(2):108–12.

    PubMed  Google Scholar 

  26. Johannsen AM, Behn AW, Shibata K, Ejnisman L, Thio T, Safran MR. The role of anterior capsular laxity in hip microinstability: a novel biomechanical model. Am J Sports Med. 2019;47(5):1151–8.

    PubMed  Google Scholar 

  27. Hoppe DJ, Truntzer JN, Shapiro LM, Abrams GD, Safran MR. Diagnostic accuracy of 3 physical examination tests in the assessment of hip microinstability. Orthopaedic Journal of Sports Medicine. 2017;5(11):2325967117740121.

    PubMed  PubMed Central  Google Scholar 

  28. Shibata KR, Matsuda S, Safran MR. Is there a distinct pattern to the acetabular labrum and articular cartilage damage in the non-dysplastic hip with instability? Knee Surgery, Sports Traumatology. Arthroscopy. 2017;25(1):84–93.

    Google Scholar 

  29. Matsuda DK, Wolff AB, Nho SJ, Salvo JP Jr, Christoforetti JJ, Kivlan BR, et al. Hip dysplasia: prevalence, associated findings, and procedures from large multicenter arthroscopy study group. Arthroscopy. 2018;34(2):444–53.

    PubMed  Google Scholar 

  30. Wyatt MC, Beck M. The management of the painful borderline dysplastic hip. J Hip Preser Surg. 2018;5(2):105–12.

    Google Scholar 

  31. Harris JD, Gerrie BJ, Lintner DM, Varner KE, McCulloch PC. Microinstability of the hip and the splits radiograph. Orthopedics. 2016;39(1):e169–75.

    PubMed  Google Scholar 

  32. Kuroda D, Maeyama A, Naito M, Moriyama S, Yoshimura I, Nakamura Y, et al. Dynamic hip stability, strength and pain before and after hip abductor strengthening exercises for patients with dysplastic hips. Isokinetics Exerc Sci. 2013;21(2):95–100.

    Google Scholar 

  33. Homma Y, Baba T, Kobayashi H, Murphy CG, Kaneko K. The importance of the soft tissue stabilizers of the hip: three cases of rapid onset osteoarthritis following hip arthroscopy. J Orthop Sci. 2017;22(4):795–801.

    PubMed  Google Scholar 

  34. Yeung M, Kowalczuk M, Simunovic N, Ayeni OR. Hip arthroscopy in the setting of hip dysplasia: a systematic review. Bone Joint Res. 2016;5(6):225–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Duplantier NL, McCulloch PC, Nho SJ, Mather RC III, Lewis BD, Harris JD. Hip dislocation or subluxation after hip arthroscopy: a systematic review. Arthroscopy. 2016;32(7):1428–34.

    PubMed  Google Scholar 

  36. Mei-Dan O, McConkey MO, Brick M. Catastrophic failure of hip arthroscopy due to iatrogenic instability: can partial division of the ligamentum teres and iliofemoral ligament cause subluxation? Arthroscopy. 2012;28(3):440–5.

    PubMed  Google Scholar 

  37. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

    PubMed  PubMed Central  Google Scholar 

  38. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.

    PubMed  Google Scholar 

  39. Kapron AL, Karns M, Aoki SK, Adeyemi TF, Baillargeon EA, Hartley MK, et al. Patient-specific parameters associated with traction stiffness in primary and revision hip arthroscopy. Orthop J of Sports Med. 2018;6(11):2325967118807707.

    Google Scholar 

  40. Martin RL, Palmer I, Martin HD. Ligamentum teres: a functional description and potential clinical relevance. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1209–14.

    PubMed  Google Scholar 

  41. Blakey CM, Field MH, Singh PJ, Tayar R, Field RE. Secondary capsular laxity of the hip. Hip Int. 2010;20(4):497–504.

    PubMed  Google Scholar 

  42. Nwachukwu BU, Gaudiani MA, Marsh NA, Ranawat AS. Labral hypertrophy correlates with borderline hip dysplasia and microinstability in femoroacetabular impingement: a matched case-control analysis. HIP Int. 2019;29(2):198–203.

    PubMed  Google Scholar 

  43. Oh K, Pandher D, Lee S. Arthroscopic management of acute painful hip following occult subluxation: evidence-based case report. Knee Surg Sports Traumatol Arthrosc. 2007;15(11):1370–4.

    CAS  PubMed  Google Scholar 

  44. Bruce W, Higgs RJ, Munidasa D, Hunjan JS, Van Der Wall H. Acute osteochondral injuries of the hip. Clin Nucl Med. 2002;27(8):547–9.

    PubMed  Google Scholar 

  45. Abrams GD, Luria A, Sampson J, Madding RA, Robinson WH, Safran MR, et al. Decreased synovial inflammation in atraumatic hip microinstability compared with femoroacetabular impingement. Arthroscopy. 2017;33(3):553–8.

    PubMed  Google Scholar 

  46. Chahla J, Soares EA, Devitt BM, Peixoto LP, Goljan P, Briggs KK, et al. Ligamentum teres tears and femoroacetabular impingement: prevalence and preoperative findings. Arthroscopy. 2016;32(7):1293–7.

    PubMed  Google Scholar 

  47. Cerezal L, Arnaiz J, Canga A, Piedra T, Altónaga JR, Munafo R, et al. Emerging topics on the hip: ligamentum teres and hip microinstability. Eur J Radiol. 2012;81(12):3745–54.

    PubMed  Google Scholar 

  48. Kapron AL, Aoki SK, Weiss JA, Krych AJ, Maak TG. Isolated focal cartilage and labral defects in patients with femoroacetabular impingement syndrome may represent new, unique injury patterns. Knee Surg Sports Traumatol Arthrosc. 2019;27(10):3057–65.

    PubMed  Google Scholar 

  49. Magerkurth O, Jacobson JA, Morag Y, Caoili E, Fessell D, Sekiya JK. Capsular laxity of the hip: findings at magnetic resonance arthrography. Arthroscopy. 2013;29(10):1615–22.

    PubMed  Google Scholar 

  50. Packer JD, Cowan JB, Rebolledo BJ, Shibata KR, Riley GM, Finlay AK, et al. The cliff sign: a new radiographic sign of hip instability. Orthop J Sports Med. 2018;6(11):2325967118807176.

    PubMed  PubMed Central  Google Scholar 

  51. Bellabarba C, Sheinkop MB, Kuo KN. Idiopathic hip instability: an unrecognized cause of Coxa Saltans in the adult. Clin Orthop Relat Res. 1998;355:261–71.

    Google Scholar 

  52. Kaya M, Suzuki T, Emori M, Yamashita T. Hip morphology influences the pattern of articular cartilage damage. Knee Surg Sports Traumatol Arthrosc. 2016;24(6).

  53. Suter A, Dietrich TJ, Maier M, Dora C, Pfirrmann CW. MR findings associated with positive distraction of the hip joint achieved by axial traction. Skeletal Radiol. 2015;44(6):787–95.

    PubMed  Google Scholar 

  54. Frank JM, Lee S, McCormick FM, Jordan M, Austell B, Slikker W, et al. Quantification and correlation of hip capsular volume to demographic and radiographic predictors. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):2009–15.

    PubMed  Google Scholar 

  55. Rodriguez M, Bolia IK, Philippon MD, Briggs KK, Philippon MJ. Hip screening of a professional ballet company using ultrasound-assisted physical examination diagnosing the at-risk hip. J Dance Med Sci. 2019;23(2):51–7.

    PubMed  Google Scholar 

  56. Mitchell RJ, Gerrie BJ, McCulloch PC, Murphy AJ, Varner KE, Lintner DM, et al. Radiographic evidence of hip microinstability in elite ballet. Arthroscopy. 2016;32(6):1038–1044.e1.

    PubMed  Google Scholar 

  57. Martin HD, Hatem MA, Kivlan BR, Martin RL. Function of the ligamentum teres in limiting hip rotation: a cadaveric study. Arthroscopy. 2014;30(9):1085–91.

    PubMed  Google Scholar 

  58. Harris JD. Hypermobile hip syndrome. Operative Tech Sports Med. 2019;27(3):108–18.

    Google Scholar 

  59. Mascarenhas VV, Ayeni OR, Egund N, Jurik AG, Caetano A, Castro M, et al. Imaging methodology for hip preservation: techniques, parameters, and thresholds. Semin in Musculoskelet Radiol. 2019;23(03):226 Thieme Medical Publishers.

    Google Scholar 

  60. Nepple JJ, Wells J, Ross JR, Bedi A, Schoenecker PL, Clohisy JC. Three patterns of acetabular deficiency are common in young adult patients with acetabular dysplasia. Clin Orthop Relat Res. 2017;475(4):1037–44.

    PubMed  Google Scholar 

  61. Siebenrock KA, Steppacher SD, Haefeli PC, Schwab JM, Tannast M. Valgus hip with high antetorsion causes pain through posterior extraarticular FAI. Clin Orthop Relat Res. 2013;471(12):3774–80.

    PubMed  PubMed Central  Google Scholar 

  62. Krych AJ, Thompson M, Larson CM, Byrd JW, Kelly BT. Is posterior hip instability associated with cam and pincer deformity? Clin Orthop Relat Res. 2012;470(12):3390–7.

    PubMed  PubMed Central  Google Scholar 

  63. Ranawat AS, McClincy M, Sekiya JK. Anterior dislocation of the hip after arthroscopy in a patient with capsular laxity of the hip: a case report. JBJS. 2009;91(1):192–7.

    Google Scholar 

  64. Kraeutler MJ, Goodrich JA, Fioravanti MJ, Garabekyan T, Mei-Dan O. The “outside-in” lesion of hip impingement and the “inside-out” lesion of hip dysplasia: two distinct patterns of acetabular chondral injury. Am J Sports Med. 2019;47(12):2978–84.

    PubMed  Google Scholar 

  65. Schmaranzer F, Todorski IAS, Lerch TD, Schwab J, Cullmann-Bastian J, Tannast M. Intra-articular lesions: imaging and surgical correlation. Semin Musculoskelet Radiol. 2017;21(05):506 Thieme Medical Publishers.

    Google Scholar 

  66. Ross JR, Zaltz I, Nepple JJ, Schoenecker PL, Clohisy JC. Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med. 2011;39(1_suppl):72–8.

    Google Scholar 

  67. O’Donnell JM, Devitt BM, Arora M. The role of the ligamentum teres in the adult hip: redundant or relevant? A review. J Hip Preserve Surg. 2018;5(1):15–22.

    Google Scholar 

  68. Byrd JT, Jones KS. Traumatic rupture of the ligamentum teres as a source of hip pain. Arthroscopy. 2004;20(4):385–91.

    PubMed  Google Scholar 

  69. Kawaguchi AT, Otsuka NY, Delgado ED, Genant HK, Lang P. Magnetic resonance arthrography in children with developmental hip dysplasia. Clin Orthop Relat Res. 1976–2007;2000(374):235–46.

    Google Scholar 

  70. Papavasiliou A, Siatras T, Bintoudi A, Milosis D, Lallas V, Sykaras E, et al. The gymnasts’ hip and groin: a magnetic resonance imaging study in asymptomatic elite athletes. Skelet Radiol. 2014;43(8):1071–7.

    CAS  Google Scholar 

  71. Mayes S, Ferris A, Smith P, Garnham A, Cook J. Atraumatic tears of the ligamentum teres are more frequent in professional ballet dancers than a sporting population. Skelet Radiol. 2016;45(7):959–67.

    Google Scholar 

  72. Haefeli PC, Steppacher SD, Babst D, Siebenrock KA, Tannast M. An increased iliocapsularis-to-rectus-femoris ratio is suggestive for instability in borderline hips. Clin Orthop Relat Res. 2015;473(12):3725–34.

    PubMed  PubMed Central  Google Scholar 

  73. Devitt BM, Smith BN, Stapf R, Tacey M, O’Donnell JM. Generalized joint hypermobility is predictive of hip capsular thickness. Orthop J Sports Med. 2017;5(4):2325967117701882.

    PubMed  PubMed Central  Google Scholar 

  74. Leunig M, Podeszwa D, Beck M, Werlen S, Ganz R. Magnetic resonance arthrography of labral disorders in hips with dysplasia and impingement. Clin Orthop Relat Res. 1976–2007;2004(418):74–80.

    Google Scholar 

  75. Domb BG, Shindle MK, McArthur B, Voos JE, Magennis EM, Kelly BT. Iliopsoas impingement: a newly identified cause of labral pathology in the hip. HSS J. 2011;7(2):145–50.

    PubMed  PubMed Central  Google Scholar 

  76. Blankenbaker DG, Tuite MJ, Keene JS, AMd R. Labral injuries due to iliopsoas impingement: can they be diagnosed on MR arthrography? Am J Roentgenol. 2012;199(4):894–900.

    Google Scholar 

  77. Brandenburg JB, Kapron AL, Wylie JD, Wilkinson BG, Maak TG, Gonzalez CD, et al. The functional and structural outcomes of arthroscopic iliopsoas release. Am J Sports Med. 2016;44(5):1286–91.

    PubMed  Google Scholar 

  78. Walczak BE, Blankenbaker DG, Tuite MR, Keene JS. Magnetic resonance imaging appearance of the hip musculature after arthroscopic labral-level iliopsoas tenotomies. Orthop J Sports Med. 2017;5(5):2325967117707498.

    PubMed  PubMed Central  Google Scholar 

  79. Fabricant PD, Bedi A, Torre KDL, Kelly BT. Clinical outcomes after arthroscopic psoas lengthening: the effect of femoral version. Arthroscopy. 2012;28(7):965–71.

    PubMed  Google Scholar 

  80. Harris JD. Editorial commentary: caveat flexor—to release or not to release the iliopsoas, that is the question. J Arthrosc Relat Surg. 2018;34(6):1851–5.

    Google Scholar 

  81. Barlow B. Editorial commentary: iliopsoas fractional lengthening: treating a disease or a symptom? Arthroscopy. 2019;34(7):2102–4.

    Google Scholar 

  82. Sutter R, Pfirrmann CW. Update on femoroacetabular impingement: what is new, and how should we assess it? Semin Musculoskelet Radiol. 2017;21(5):518–28 Thieme Medical Publishers.

    PubMed  Google Scholar 

  83. Beltran LS, Rosenberg ZS, Mayo JD, De Tuesta MD, Martin O, Neto LP, et al. Imaging evaluation of developmental hip dysplasia in the young adult. AJR Am J Roentgenol. 2013;200(5):1077–88.

    PubMed  Google Scholar 

  84. Schmaranzer F, Cerezal L, Llopis E. Conventional and arthrographic magnetic resonance techniques for hip evaluation: what the radiologist should know. Semin Musculoskelet Radiol. 2019;23(3):227–51 Thieme Medical Publishers.

    PubMed  Google Scholar 

  85. Agten CA, Sutter R, Buck FM, Pfirrmann CW. Hip imaging in athletes: sports imaging series. Radiology. 2016;280(2):351–69.

    PubMed  Google Scholar 

  86. Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol. 2011;21(4):863–74.

    PubMed  Google Scholar 

  87. Sutter R, Zubler V, Hoffmann A, Mamisch-Saupe N, Dora C, Kalberer F, et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol. 2014;202(1):160–9.

    PubMed  Google Scholar 

  88. Naraghi A, White LM. MRI of labral and chondral lesions of the hip. AJR Am J Roentgenol. 2015;205(3):479–90.

    PubMed  Google Scholar 

  89. Tian CY, Wang JQ, Zheng ZZ, Ren AH. 3.0 T conventional hip MR and hip MR arthrography for the acetabular labral tears confirmed by arthroscopy. Eur Radiol. 2014;83(10):1822–7.

    Google Scholar 

  90. Magee T. Comparison of 3.0-T MR vs 3.0-T MR arthrography of the hip for detection of acetabular labral tears and chondral defects in the same patient population. Br J Radiol. 2015;88(1053):20140817.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kheterpal AB, Bunnell KM, Husseini JS, Chang CY, Martin SD, Zoga AC, et al. Value of response to anesthetic injection during hip MR arthrography to differentiate between intra-and extra-articular pathology. Skelet Radiol. 2020;49(4):555–61.

    Google Scholar 

  92. Mascarenhas VV, Caetano A. Imaging the young adult hip in the future. Ann Joint. 2018;3:47.

    Google Scholar 

  93. Klaan B, Wuennemann F, Kintzelé L, Gersing AS, Weber MA. MR and CT arthrography in cartilage imaging: indications and implementation. Radiologe. 2019;59(8):710–21.

    CAS  PubMed  Google Scholar 

  94. Burke CJ, Walter WR, Gyftopoulos S, Pham H, Baron S, Gonzalez-Lomas G, et al. Real-time assessment of femoroacetabular motion using radial gradient echo magnetic resonance arthrography at 3 Tesla in routine clinical practice: a pilot study. Arthroscopy. 2019;35(8):2366–74.

    PubMed  Google Scholar 

  95. d’Hemecourt PA, Sugimoto D, McKee-Proctor M, Zwicker RL, Jackson SS, Novais EN, et al. Can dynamic ultrasonography of the hip reliably assess anterior femoral head translation? Clin Orthop Relat Res. 2019;477(5):1086–98.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renuka M Vesey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodward, R.M., Vesey, R.M., Bacon, C.J. et al. Microinstability of the hip: a systematic review of the imaging findings. Skeletal Radiol 49, 1903–1919 (2020). https://doi.org/10.1007/s00256-020-03516-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03516-7

Keywords

Navigation