Skip to main content
Log in

Patterns of cartilage degeneration in knees with medial tibiofemoral offset

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine if radiographic medial tibiofemoral offset (MTFO) is associated with: (1) magnetic resonance imaging (MRI) pathology of cartilage, meniscus, and ligament; and (2) a distinct pattern of lateral cartilage degeneration on MRI.

Materials and methods

Three hundred consecutive adult knee MRIs with anteroposterior (AP) radiographs were retrospectively reviewed, and 145 studies were included. MTFO was defined as a medial extension of the medial femoral condyle beyond the articular surface of the medial tibial plateau on weight-bearing AP radiographs. The patients were then divided into the MTFO (n = 61) or no-offset (n = 84) groups. On MRI data obtained on a 1.5-Tesla system, articular cartilage of the femoral condyle and tibial plateau were graded using a modified Outerbridge classification (36 sub-regions similar to whole-organ MRI Score (WORMS) system). In addition, MR pathology of the ACL, MCL, LCL, medial and lateral menisci, were determined.

Results

Significantly increased (ANOVA p < 0.007) MR grade of the ligaments, menisci, and cartilage in the MTFO group (ranging from 0.3 to 2.5) compared to the control group (0.2 to 1.1). Color maps of the cartilage grades suggested a marked difference in both severity of degeneration and regional variations between the groups. MTFO group exhibited focally increased cartilage grades in the central, non-weight regions of lateral compartment (region p = 0.07 to 0.12, interaction p = 0.05 to 0.1).

Conclusions

MTFO is associated with overall degeneration of the knee and features a distinct lateral cartilage degeneration pattern, which may reflect non-physiologic contact of the cartilage between the lateral tibial eminence and lateral central femoral condyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol Rev. 1988;10:1–28.

    Article  CAS  PubMed  Google Scholar 

  2. Blalock D, Miller A, Tilley M, Wang J. Joint instability and osteoarthritis. Clin Med Insights Arthritis Musculoskelet Dis. 2015;8:15–23.

    Google Scholar 

  3. Hunter DJ, Sharma L, Skaife T. Alignment and osteoarthritis of the knee. J Bone Joint Surg Am. 2009;91(Suppl 1):85–9.

    Article  PubMed  Google Scholar 

  4. Reijman M, Pols HA, Bergink AP, Hazes JM, Belo JN, Lievense AM, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis. 2007;66(2):158–62.

    Article  CAS  PubMed  Google Scholar 

  5. Wu DD, Burr DB, Boyd RD, Radin EL. Bone and cartilage changes following experimental varus or valgus tibial angulation. J Orthop Res. 1990;8:572–85.

    Article  CAS  PubMed  Google Scholar 

  6. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    Article  PubMed  Google Scholar 

  7. Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, et al. In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2010;18(7):909–16.

    Article  CAS  PubMed Central  Google Scholar 

  8. Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. 2006;442:39–44.

    Article  PubMed  Google Scholar 

  9. Khamaisy S, Zuiderbaan HA, Thein R, Gladnick BP, Pearle AD. Coronal tibiofemoral subluxation in knee osteoarthritis. Skelet Radiol. 2016;45(1):57–61.

    Article  Google Scholar 

  10. Khamaisy S, Nam D, Thein R, Rivkin G, Liebergall M, Pearle A. Limb alignment, subluxation, and bone density relationship in the osteoarthritic varus knee. J Knee Surg. 2015;28(3):207–12.

    PubMed  Google Scholar 

  11. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46:2884–92.

    Article  PubMed  Google Scholar 

  12. Major NM, Beard LN, Helms CA. Accuracy of MR imaging of the knee in adolescents. Am J Roentgenol. 2003;180(1):17–9.

    Article  Google Scholar 

  13. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology. 2000;214(1):259–66.

    Article  CAS  PubMed  Google Scholar 

  14. Abdulaal OM, Rainford L, MacMahon P, Kavanagh E, Galligan M. Cashman J, et al. 3T MRI of the knee with optimised isotropic 3D sequences: accurate delineation of intra-articular pathology without prolonged acquisition times. Eur Radiol. 2017;27(11):4563–70.

    Article  PubMed  Google Scholar 

  15. Kijowki R, Gold GE. Routine three-dimensional magnetic resonance imaging of joints. J Magn Reson Imaging. 2011;33(4):758–71.

    Article  PubMed Central  Google Scholar 

  16. Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  17. Eckstein F, Wirth W, Hudelmaier MI, Maschek S, Hitzl W, Wyman BT, et al. Relationship of compartment-specific structural knee status at baseline with change in cartilage morphology: a prospective observational study using data from the osteoarthritis initiative. Arthritis Res Ther. 2009;11(3):R90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276–85.

    Article  PubMed  Google Scholar 

  19. Van Ginckel A, Verdonk P, Witvrouw E. Cartilage adaptation after anterior cruciate ligament injury and reconstruction: implications for clinical management and research? A systematic review of longitudinal MRI studies. Osteoarthr Cartil. 2013;21(8):1009–24.

    Article  PubMed  Google Scholar 

  20. Thein R, Boorman-Padgett J, Khamaisy S, Zuiderbaan HA, Wickiewicz TL, Imhauser CW, et al. Medial subluxation of the tibia after anterior cruciate ligament rupture as revealed by standing radiographs and comparison with a cadaveric model. Am J Sports Med. 2015;43(12):3027–33.

    Article  PubMed  Google Scholar 

  21. McHugh ML. Interrater reliability: the kappa statistic. Biochemia Medica. 2012;22(3):276–82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR Jr, MacDonald P. The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop. 2015;2015:928301.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240–6.

    Article  PubMed  Google Scholar 

  24. Li G, Papannagari R, DeFrate LE, Yoo JD, Park SE, Gill TJ. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Acta Orthop. 2007;78(3):355–60.

    Article  PubMed  Google Scholar 

  25. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–64.

    Article  CAS  PubMed  Google Scholar 

  26. Lipke JM, Janecki CJ, Nelson CL, McLeod P, Thompson C, Thompson J, et al. The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. J Bone Joint Surg Am. 1981;63(6):954–60.

    Article  CAS  PubMed  Google Scholar 

  27. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr. 2007;2(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):355–61.

    Article  PubMed  Google Scholar 

  29. Arno S, Bell CP, Uquillas C, Borukhov I, Walker PS. Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus. J Orthop Res. 2015;33(4):584–90.

    Article  PubMed  Google Scholar 

  30. Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy. 2005;21(11):1366–9.

    Article  PubMed  Google Scholar 

  31. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ho-Pham LT, Lai TQ, Mai LD, Doan MC, Pham HN, Nguyen TV. Prevalence of radiographic osteoarthritis of the knee and its relationship to self-reported pain. PLoS One. 2014;9(4):e94563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine B. Chung.

Ethics declarations

Conflict of interest

This study was supported by the following grants: scholarship of Faculty of Medicine Siriraj Hospital. We disclose any financial support or author involvement with organization(s) with financial interest in the subject matter.

IRB statement

This study was approved by the local ethical committee of the VA San Diego Healthcare System (IRB number 160142). All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was waived by the local ethical committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siriwanarangsun, P., Chen, K.C., Finkenstaedt, T. et al. Patterns of cartilage degeneration in knees with medial tibiofemoral offset. Skeletal Radiol 48, 931–937 (2019). https://doi.org/10.1007/s00256-018-3093-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-3093-3

Keywords

Navigation