Skip to main content

Advertisement

Log in

Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To quantify MR properties of discs from cadaveric human temporomandibular joints (TMJ) using quantitative conventional and ultrashort time-to-echo magnetic resonance imaging (UTE MRI) techniques and to corroborate regional variation in the MR properties with that of biomechanical indentation stiffness.

Methods

This study was exempt from the institutional review board approval. Cadaveric (four donors, two females, 74 ± 10.7 years) TMJs were sliced (n = 14 slices total) sagittally and imaged using quantitative techniques of conventional spin echo T2 (SE T2), UTE T2*, and UTE T1rho. The discs were then subjected to biomechanical indentation testing, which is performed by compressing the tissue with the blunt end of a small solid cylinder. Regional variations in MR and indentation stiffness were correlated. TMJ of a healthy volunteer was also imaged to show in vivo feasibility.

Results

Using the ME SE T2 and the UTE T1rho techniques, a significant (each p < 0.0001) inverse relation between MR and indentation stiffness properties was observed for the data in the lower range of stiffness. However, the strength of correlation was significantly higher (p < 0.05) for UTE T1rho (R2 = 0.42) than SE T2 (R2 = 0.19) or UTE T2* (R2 = 0.02, p = 0.1) techniques.

Conclusion

The UTE T1rho technique, applicable in vivo, facilitated quantitative evaluation of TMJ discs and showed a high sensitivity to biomechanical softening of the TMJ discs. With additional work, the technique may become a useful surrogate measure for loss of biomechanical integrity of TMJ discs reflecting degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alomar X, Medrano J, Cabratosa J, Clavero JA, Lorente M, Serra I, et al. Anatomy of the temporomandibular joint. Semin Ultrasound CT MR. 2007;28(3):170–83.

    Article  CAS  PubMed  Google Scholar 

  2. Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 2005;24(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  3. Nakano T, Scott PG. Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch Oral Biol. 1996;41(8–9):845–53.

    Article  CAS  PubMed  Google Scholar 

  4. Nakano T, Sim JS. Glycosaminoglycans from the rooster comb and wattle. Poult Sci. 1989;68(9):1303–6.

    Article  CAS  PubMed  Google Scholar 

  5. Sindelar BJ, Evanko SP, Alonzo T, Herring SW, Wight T. Effects of intraoral splint wear on proteoglycans in the temporomandibular joint disc. Arch Biochem Biophys. 2000;379(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  6. Almarza AJ, Bean AC, Baggett LS, Athanasiou KA. Biochemical analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg. 2006;44(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  7. Beek M, Aarnts MP, Koolstra JH, Feilzer AJ, van Eijden TM. Dynamic properties of the human temporomandibular joint disc. J Dent Res. 2001;80(3):876–80.

    Article  CAS  PubMed  Google Scholar 

  8. Beek M, Koolstra JH, van Eijden TMGJ. Human temporomandibular joint disc cartilage as a poroelastic material. Clin Biomech (Bristol, Avon). 2003;18(1):69–76.

    Article  CAS  Google Scholar 

  9. Chin LP, Aker FD, Zarrinnia K. The viscoelastic properties of the human temporomandibular joint disc. J Oral Maxillofac Surg. 1996;54(3):315–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kang H, Bao G-J, Qi S-N. Biomechanical responses of human temporomandibular joint disc under tension and compression. Int J Oral Maxillofac Surg. 2006;35(9):817–21.

    Article  CAS  PubMed  Google Scholar 

  11. Kim K-W, Wong ME, Helfrick JF, Thomas JB, Athanasiou KA. Biomechanical tissue characterization of the superior joint space of the porcine temporomandibular joint. Ann Biomed Eng. 2003;31(8):924–30.

    Article  PubMed  Google Scholar 

  12. Tanaka E, van Eijden T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med. 2003;14(2):138–50.

    Article  PubMed  Google Scholar 

  13. Tanaka E, Yamano E, Dalla-Bona DA, Watanabe M, Inubushi T, Shirakura M, et al. Dynamic compressive properties of the mandibular condylar cartilage. J Dent Res. 2006;85(6):571–5.

    Article  CAS  PubMed  Google Scholar 

  14. Lu XL, Mow VC, Guo XE. Proteoglycans and mechanical behavior of condylar cartilage. J Dent Res. 2009;88(3):244–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bae WC, Temple MM, Amiel D, Coutts RD, Niederauer GG, Sah RL. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheum. 2003;48(12):3382–94.

    Article  PubMed  Google Scholar 

  16. Bae WC, Lewis CW, Levenston ME, Sah RL. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J Biomech. 2006;39(6):1039–47.

    Article  PubMed  Google Scholar 

  17. Stowell AW, Gatchel RJ, Wildenstein L. Cost-effectiveness of treatments for temporomandibular disorders: biopsychosocial intervention versus treatment as usual. J Am Dent Assoc. 2007;138(2):202–8.

    Article  PubMed  Google Scholar 

  18. Goncalves DA, Dal Fabbro AL, Campos JA, Bigal ME, Speciali JG. Symptoms of temporomandibular disorders in the population: an epidemiological study. J Orofac Pain. 24(3):270–78.

  19. Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):844–60.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Klasser GD, Greene CS. The changing field of temporomandibular disorders: what dentists need to know. J Can Dent Assoc. 2009;75(1):49–53.

    PubMed  Google Scholar 

  21. Dimitroulis G. The prevalence of osteoarthrosis in cases of advanced internal derangement of the temporomandibular joint: a clinical, surgical and histological study. Int J Oral Maxillofac Surg. 2005;34(4):345–9.

    Article  CAS  PubMed  Google Scholar 

  22. Tominaga K, Hirashima S, Fukuda J. An experimental model of osteoarthrosis of the temporomandibular joint in monkeys. Br J Oral Maxillofac Surg. 2002;40(3):232–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kopp S. Topographical distribution of sulphated glycosaminoglycans in human temporomandibular joint disks. A histochemical study of an autopsy material. J Oral Pathol. 1976;5(5):265–76.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka E, Shibaguchi T, Tanaka M, Tanne K. Viscoelastic properties of the human temporomandibular joint disc in patients with internal derangement. J Oral Maxillofac Surg. 2000;58(9):997–1002.

    Article  CAS  PubMed  Google Scholar 

  25. Ren YF, Westesson PL, Isberg A. Magnetic resonance imaging of the temporomandibular joint: value of pseudodynamic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81(1):110–23.

    Article  CAS  PubMed  Google Scholar 

  26. Cavalcanti MG, Lew D, Ishimaru T, Ruprecht A. MR imaging of the temporomandibular joint: a validation experiment in vitro. Acad Radiol. 1999;6(11):675–9.

    Article  CAS  PubMed  Google Scholar 

  27. Chirani RA, Jacq JJ, Meriot P, Roux C. Temporomandibular joint: a methodology of magnetic resonance imaging 3-D reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(6):756–61.

    Article  PubMed  Google Scholar 

  28. Stehling C, Vieth V, Bachmann R, Nassenstein I, Kugel H, Kooijman H, et al. High-resolution magnetic resonance imaging of the temporomandibular joint: image quality at 1.5 and 3.0 Tesla in volunteers. Investig Radiol. 2007;42(6):428–34.

    Article  Google Scholar 

  29. Vilanova JC, Barcelo J, Puig J, Remollo S, Nicolau C, Bru C. Diagnostic imaging: magnetic resonance imaging, computed tomography, and ultrasound. Semin Ultrasound CT MR. 2007;28(3):184–91.

    Article  PubMed  Google Scholar 

  30. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27(6):825–46.

    Article  PubMed  Google Scholar 

  31. Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed. 2006;19(7):765–80.

    Article  PubMed  Google Scholar 

  32. Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207(2):304–11.

    Article  CAS  PubMed  Google Scholar 

  33. Du J, Carl M, Diaz E, Takahashi A, Han E, Szeverenyi NM, et al. Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus. Magn Reson Med. 2010;64(3):834–42.

    Article  PubMed  Google Scholar 

  34. Wheaton AJ, Dodge GR, Elliott DM, Nicoll SB, Reddy R. Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Magn Reson Med. 2005;54(5):1087–93.

    Article  CAS  PubMed  Google Scholar 

  35. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  36. Zarins ZA, Bolbos RI, Pialat JB, Link TM, Li X, Souza RB, et al. Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthr Cartil. 2010;18(11):1408–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S. In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63(5):1193–200.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Yuya PA, Amborn EK, Beatty MW, Turner JA. Evaluating anisotropic properties in the porcine temporomandibular joint disc using nanoindentation. Ann Biomed Eng. 2010;38(7):2428–37.

    Article  CAS  PubMed  Google Scholar 

  39. Luder HU. Frequency and distribution of articular tissue features in adult human mandibular condyles: a semiquantitative light microscopic study. Anat Rec. 1997;248(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  40. Bae WC, Law AW, Amiel D, Sah RL. Sensitivity of indentation testing to step-off edges and interface integrity in cartilage repair. Ann Biomed Eng. 2004;32:360–9.

    Article  PubMed  Google Scholar 

  41. Carlsson G, LeResche L. Epidemiology of temporomandibular disorders. In: Sessle B, Bryant P, Dionne R, editors. Temporomandibular disorders and related pain conditions. Seattle: IASP Press; 1995.

    Google Scholar 

  42. Clement C, Bravetti P, Plenat F, Foliguet B, Haddioui AE, Gaudy JF, et al. Quantitative analysis of the elastic fibres in the human temporomandibular articular disc and its attachments. Int J Oral Maxillofac Surg. 2006;35(12):1120–6.

    Article  CAS  PubMed  Google Scholar 

  43. Foucart JM, Pajoni D, Carpentier P, Pharaboz C. MRI study of temporomandibular joint disk behavior in chilren with hyperpropulsion appliances. Orthod Fr. 1998;69(1):79–91.

    CAS  PubMed  Google Scholar 

  44. Gold DM. Direct measurement of prepulse suppression by use of a plasma shutter. Opt Lett. 1994;19(23):2006–8.

    Article  CAS  PubMed  Google Scholar 

  45. Rao VM, Bacelar MT. MR imaging of the temporomandibular joint. Neuroimaging Clin N Am. 2004;14(4):761–75.

    Article  PubMed  Google Scholar 

  46. Landesberg R, Takeuchi E, Puzas JE. Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol. 1996;41(8–9):761–7.

    Article  CAS  PubMed  Google Scholar 

  47. Duyn J, van Gelderen P, Li T, de Zwart J, Koretsky A, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A. 2007;104(28):11796–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bae W, Dwek J, Znamirowski R, Statum S, Hermida J, D’Lima D, et al. Ultrashort TE MRI of the Osteochondral junction of the knee at 3T: identification of anatomic structures contributing to signal intensity. Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine; 2009 April; Honolulu; 2009. p. 78.

  49. Helms CA, Kaban LB, McNeill C, Dodson T. Temporomandibular joint: morphology and signal intensity characteristics of the disk at MR imaging. Radiology. 1989;172(3):817–20.

    Article  CAS  PubMed  Google Scholar 

  50. Berkovitz BK, Pacy J. Age changes in the cells of the intra-articular disc of the temporomandibular joints of rats and marmosets. Arch Oral Biol. 2000;45(11):987–95.

    Article  CAS  PubMed  Google Scholar 

  51. Hayakawa Y, Kober C, Otonari-Yamamoto M, Otonari T, Wakoh M, Sano T. An approach for three-dimensional visualization using high-resolution MRI of the temporomandibular joint. Dentomaxillofac Radiol. 2007;36(6):341–7.

    Article  CAS  PubMed  Google Scholar 

  52. Wang EY, Mulholland TP, Pramanik BK, Nusbaum AO, Babb J, Pavone AG, et al. Dynamic sagittal half-Fourier acquired single-shot turbo spin-echo MR imaging of the temporomandibular joint: initial experience and comparison with sagittal oblique proton-attenuation images. AJNR Am J Neuroradiol. 2007;28(6):1126–32.

    Article  CAS  PubMed  Google Scholar 

  53. Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res. 1999;48(4):482–7.

    Article  CAS  PubMed  Google Scholar 

  54. Martin I, Obradovic B, Freed LE, Vunjak-Novakovic G. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann Biomed Eng. 1999;27(5):656–62.

    Article  CAS  PubMed  Google Scholar 

  55. Milam SB, Klebe RJ, Triplett RG, Herbert D. Characterization of the extracellular matrix of the primate temporomandibular joint. J Oral Maxillofac Surg. 1991;49(4):381–91.

    Article  CAS  PubMed  Google Scholar 

  56. Sah RL, Chen AC, Grodzinsky AJ, Trippel SB. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 1994;308:137–47.

    Article  CAS  PubMed  Google Scholar 

  57. Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. 2002;30:2–12.

    PubMed  Google Scholar 

  58. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.

    Article  CAS  PubMed  Google Scholar 

  59. Samosky JT, Burstein D, Eric Grimson W, Howe R, Martin S, Gray ML. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res. 2005;23(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  60. Yokoo T, Bae WC, Hamilton G, Karimi A, Borgstede JP, Bowen BC, et al. A quantitative approach to sequence and image weighting. J Comput Assist Tomogr. 2010;34(3):317–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article was made possible in part by a Veterans Affairs Merit grant (project ID 1161961) and the National Institute of Dental and Craniofacial Research of the National Institutes of Health in support of Dr. Christine B. Chung (grant no. 5R01 DE022068), as well as the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health in support of Dr. Won C. Bae (grant no. K01AR059764). The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or Veterans Affairs.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding sources

VA, NIH

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine B. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, W.C., Biswas, R., Statum, S. et al. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc. Skeletal Radiol 43, 1217–1223 (2014). https://doi.org/10.1007/s00256-014-1901-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-1901-y

Keywords

Navigation