Skip to main content
Log in

Case–control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Computed tomography (CT) is used to assess for fracture after knee trauma, but identification of ligamentous injuries may also be beneficial. Our purpose is to assess the potential of dual-energy computed tomography (DECT) for the detection of complete anterior cruciate ligament (ACL) disruption.

Methods

Sixteen patients with unilateral traumatic ACL disruption (average of 58 days following trauma) confirmed by MRI, and 11 control patients without trauma, underwent DECT of both knees. For each knee, axial, sagittal, and oblique sagittal images (with DECT bone removal, single-energy (SE) bone removal, and DECT tendon-specific color mapping) were reconstructed. Four musculoskeletal radiologists randomly evaluated the 324 DECT reconstructed series (54 knees with 6 displays) separately, to assess for ACL disruption using a five-point scale (1 = definitely not torn, to 5 = definitely torn). ROC analysis was used to compare performance across readers and displays.

Results

Sagittal oblique displays (mixed kV soft tissue, SE bone removal, and DECT bone removal) demonstrated higher areas under the curve for ACL disruption (AUC = 0.95, 0.93 and 0.95 respectively) without significant differences in performance between readers (p > 0.23). Inter-reader agreement was also better for these display methods (ICC range 0.62–0.69) compared with other techniques (ICC range 0.41–0.57). Mean sensitivity for ACL disruption was worst for DECT tendon-specific color map and axial images (24 % and 63 % respectively).

Conclusion

DECT knee images with oblique sagittal reconstructions using either mixed  kV or bone removal displays (either DECT or SE) depict ACL disruption in the subacute or chronic setting with reliable identification by musculoskeletal radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guenoun D, Le Corroller T, Amous Z, Pauly V, Sbihi A, Champsaur P. Contribution of MRI in the diagnosis of traumatic ruptures of the anterior cruciate ligament. J Radiol Diagn Interv. 2012;93(5):357–67.

    Google Scholar 

  2. Robertson PL, Schweitzer ME, Bartolozzi AR, Ugoni A. Anterior cruciate ligament tears—evaluation of multiple signs with MR imaging. Radiology. 1994;193(3):829–34.

    CAS  PubMed  Google Scholar 

  3. Krampla W, Roesel M, Svoboda K, Nachbagauer A, Gschwantler M, Hruby W. MRI of the knee: how do field strength and radiologist's experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament? Eur Radiol. 2009;19(6):1519–28.

    Article  CAS  PubMed  Google Scholar 

  4. Klass D, Toms AP, Greenwood R, Hopgood P. MR imaging of acute anterior cruciate ligament injuries. Knee. 2007;14(5):339–47.

    Article  PubMed  Google Scholar 

  5. Moore SL. Imaging the anterior cruciate ligament. Orthop Clin N Am. 2002;33(4):663–74.

    Article  Google Scholar 

  6. Cotten A, Delfaut E, Demondion X, Lapegue F, Boukhelifa M, Boutry N, et al. MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. Am J Roentgenol. 2000;174(4):1093–7.

    Article  CAS  Google Scholar 

  7. Fischer SP, Fox JM, Delpizzo W, Friedman MJ, Snyder SJ, Ferkel RD. Accuracy of diagnoses from magnetic-resonance-imaging of the knee—a multicenter analysis of 1014 patients. J Bone Joint Surg Am. 1991;73A(1):2–10.

    Google Scholar 

  8. Ha TPT, Li KCP, Beaulieu CF, Bergman G, Ch'en IY, Eller DJ, et al. Anterior cruciate ligament injury: Fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. Am J Roentgenol. 1998;170(5):1215–9.

    Article  CAS  Google Scholar 

  9. Hung SS, Chao E-K, Chan Y-S, Yuan L-J, Chung PC-H, Chen C-Y, et al. Arthroscopically assisted osteosynthesis for tibial plateau fractures. J Trauma. 2003;54:356–63.

    Article  PubMed  Google Scholar 

  10. Abdel-Hamid MZ, Chang CH, Chan YS, Lo YP, Huang JW, Hsu KY, et al. Arthroscopic evaluation of soft tissue injuries in tibial plateau fractures: Retrospective analysis of 98 cases. Arthroscopy. 2006;22(6):669–75.

    Article  PubMed  Google Scholar 

  11. Gardner MJ, Yacoubian S, Geller D, Pode M, Mintz D, Helfet DL, et al. Prediction of soft-tissue injuries in Schatzker II tibial plateau fractures based on measurements of plain radiographs. J Trauma. 2006;60(2):319–23.

    Article  PubMed  Google Scholar 

  12. Stannard JP, Lopez R, Volgas D. Soft tissue injury of the knee after tibial plateau fractures. J Knee Surg. 2010;23(4):187–92.

    Article  PubMed  Google Scholar 

  13. Yacoubian SV, Nevins RT, Sallis JG, Potter HG, Lorich DG. Impact of MRI on treatment plan and fracture classifications of tibial plateau fractures. J Orthop Traumatol. 2002;16:632–7.

    Google Scholar 

  14. Markhardt BK, Gross JM, Monu JUV. Schatzker classification of tibial plateau fractures: use of CT and MR imaging improves assessment. Radiographics. 2009;29:585–97.

    Article  PubMed  Google Scholar 

  15. Primak AN, Ramirez Giraldo JC, Liu X, Yu L, McCollough CH. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36(4):1359–69.

    Article  CAS  PubMed  Google Scholar 

  16. Delong ER, Delong DM, Clarkepearson DI. Comparing the areas under 2 or more correlated receiver operating characteristic curves—a nonparametric approach. Biometrics. 1988;44(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  17. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  18. Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35–47.

    Article  PubMed  Google Scholar 

  19. Steckel H, Fu FH, Baums MH, Klinger HM. Arthroscopic evaluation of the ACL double bundle structure. Knee Surg Sport Traumatol Arthrosc. 2009;17(7):782–5.

    Article  Google Scholar 

  20. Mustonen AOT, Koskinen SK, Kiuru MJ. Acute knee trauma: analysis of multidetector computed tomography findings and comparison with conventional radiography. Acta Radiol. 2005;46(8):866–74.

    Article  CAS  PubMed  Google Scholar 

  21. Vande Berg BC, Lecouvet FE, Poilvache P, Maldague B, Malghem J. Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee. Eur Radiol. 2002;12(7):1800–10.

    Article  CAS  PubMed  Google Scholar 

  22. Mustonen AOT, Koivikko MP, Haapamaki VV, Kiuru MJ, Lamminen AE, Koskinen SK. Multidetector computed tomography in acute knee injuries: assessment of cruciate ligaments with magnetic resonance imaging correlation. Acta Radiol. 2007;48(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  23. Vellet AD, Marks P, Fowler P, Munro T. Accuracy of nonorthogonal magnetic resonance imaging in acute disruption of the anterior cruciate ligament. Arthroscopy. 1989;5(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  24. Mui LW, Engelsohn E, Umans H. Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament or meniscal injury? Skeletal Radiol. 2007;36:145–51.

    Article  PubMed  Google Scholar 

  25. Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol. 2012;199:S78–86.

    Article  PubMed  Google Scholar 

  26. Sun C, Miao F, Wang X-M, Wang T, Ma R, Wang D-P, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anal. 2008;30:443–7.

    Article  Google Scholar 

  27. Johnson TRC, Kraub B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  28. Persson A, Jakowski C, Engstrom E, Zachrisson H. Advances of dual source, dual-energy imaging in postmortem CT. Eur J Radiol. 2008;68:446–55.

    Article  PubMed  Google Scholar 

  29. Deng K, Sun C, Liu C, Ma R. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography. Clin Imaging. 2009;33(5)384–9.

    Article  PubMed  Google Scholar 

  30. Fickert S, Niks M, Dinter DJ, Hammer M, Weckbach S, Schoenberg SO, et al. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiol. 2013; 42(3):411–17.

    Article  CAS  PubMed  Google Scholar 

  31. Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology. 2010;256(2):617–24.

    Article  PubMed  Google Scholar 

  32. Guggenberger R, Gnannt R, Hodler J, Krauss B, Wanner GA, Csuka E, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology. 2012;264(1):164–73.

    Article  PubMed  Google Scholar 

  33. Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT)_ in hip replacements. Skelet Radiol. 2012;42:275–82.

    Article  Google Scholar 

Download references

Acknowledgements

The CT scanner used was provided thanks to a grant from Siemens Healthcare. J.G. Fletcher and Cynthia McCollough receive grant funding from Siemens Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina N. Glazebrook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazebrook, K.N., Brewerton, L.J., Leng, S. et al. Case–control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma. Skeletal Radiol 43, 297–305 (2014). https://doi.org/10.1007/s00256-013-1784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1784-3

Keywords

Navigation