Skip to main content

Advertisement

Log in

Atypical diaphyseal femoral fractures—new aspects

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Post menopausal osteoporotic fractures are a major public health concern worldwide with oral bisphosphonates favored for their prevention and treatment. Recent interest has centered on clinically observed, unusually sited femoral diaphyseal fractures, particularly attributed to alendronate. Their imaging presentations on routine radiographs, alternate imaging modalities, and associated pitfalls in nine fractures in six patients are selectively illustrated by seven fractures in four patients that serve to emphasize the following: (1) Bisphosphonates other than alendronate have been used for treating various bone diseases in children and men as well as osteoporotic women. (2) Effects may differ with each bisphosphonate’s route of administration and prolongation of activity, despite discontinuation. Prior investigations and theoretical mechanisms of bisphosphonates as a class rather than with a specific alendronate association are reviewed to provide a broader basis for evaluating their recently observed clinical and radiographic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shane E. Evolving data about subtrochanteric fractures and bisphosphonates. N Engl J Med. 2010;362(19):1825–7.

    Article  PubMed  CAS  Google Scholar 

  2. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. J Clin Endocrinol Metab. 2000;85:4118–24.

    Article  PubMed  CAS  Google Scholar 

  3. Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.

    Article  PubMed  CAS  Google Scholar 

  4. Bilezikian JP. Efficiency of bisphosphonates in reducing fracture risk in post menopausal osteoporosis. Am J Med. 2009;122:S14–21.

    Article  PubMed  CAS  Google Scholar 

  5. Tomino RP, Meunier PJ, Emkey R, et al. Skeletal benefits of alendronate: 7 year treatment of postmenopausal osteoporotic women. Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab. 2000;85:3109–15.

    Article  Google Scholar 

  6. Bagger YZ, Tanko LB, Alexandersen P, et al. Alendronate has a residual effect on bone mass in postmenopausal Danish women up to 7 years after treatment withdrawal. Bone. 2003;33:301–7.

    Article  PubMed  CAS  Google Scholar 

  7. La Velle DG. Fractures of the hip. In: Canale ST, editor. Campbell’s operative orthopaedics, vol. 3, 10th ed. St. Louis: Mosby 2002:2873–938.

  8. Schilcher J, Aspenberg P. Incidence of stress fractures of the femoral shaft in women treated with bisphosphonate. Acta Orthop. 2009;80(4):413–5.

    Article  PubMed  Google Scholar 

  9. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid induced osteoporosis. N Engl J Med. 2007;357:2028–39.

    Article  PubMed  CAS  Google Scholar 

  10. Goh SK, Yang KY, Koh JSB, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007;89B:349–53.

    Google Scholar 

  11. Kwek EB, Goh SK, Bee Koh JS, et al. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39:224–31.

    Article  PubMed  Google Scholar 

  12. Visekruna M, Wilson D, McKiernan FE. Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab. 2008;93:2948–52.

    Article  PubMed  CAS  Google Scholar 

  13. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis, in postmenopausal woman taking alendronate. N Engl J Med. 2008;358:1304–6.

    Article  PubMed  CAS  Google Scholar 

  14. Porrino Jr JA, Kohl CH, Taljanovic M, Rogers LF. Diagnosis of proximal femoral insufficiency fractures in patients receiving biophosphonate therapy. AJR Am J Roentgenol. 2010;194:1061–4.

    Article  PubMed  Google Scholar 

  15. Bush LA, Chew FS. Subtrochanteric femoral insufficiency fracture following bisphosphonate therapy for osseous metastasis. Radiol Case Rep. 2009;4:1.

    Google Scholar 

  16. Chan SS, Rosenberg ZS, Chan K, et al. Subtrochanteric femoral fractures in patients receiving long term alendronate therapy: imaging features. A JR Am J Roentgenol. 2010;194:1581–6.

    Article  Google Scholar 

  17. Pauwels F. Die Bedeutung der Bauprinzipien des Stutz- und Bewegungsapparates fur die Beanspruchung der Rohrenknochen. Anat Embryol. 1948;114:1–2.

    Article  Google Scholar 

  18. Fleisch H, Neuman WF. Mechanism of calcification: role of collagen polyphosphonates and phosphatase. Am J Physiol. 1961;200:1296–300.

    CAS  Google Scholar 

  19. Fleisch H, Bisz S. Isolation from urine of pyrophosphates a calcification inhibitor. Am J Physiol. 1962;203:671–5.

    PubMed  CAS  Google Scholar 

  20. Fleisch H. In: Bilezikian JP, Rodan GA, editors. Mechanism of action in bisphosphonates in principles of bone biology, vol. 1, 2nd ed. San Diego: Academic Press; 2002. p. 1361–85.

    Google Scholar 

  21. Ott SM. Editorial: long-term safety of bisphosphonates. J Clin Endocrinol Metab. 2005;90(3):1897–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–20.

    Article  PubMed  CAS  Google Scholar 

  23. Odvina CV, Zerwekh JE, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90(3):1294–301.

    Article  PubMed  CAS  Google Scholar 

  24. Lackman SP, Hughee DE, Coxon FB, et al. Nitrogen-containing bisphosphonates inhibit the mevolonate pathways and prevents posttranslational phenylnation of GTPbinding proteins including RAS. J Bone Miner Res. 1998;13:581–9.

    Article  Google Scholar 

  25. Weinstein RS, Roberson PK, Manalagas SC. Giant osteoclast formation and long term oral bisphosphonate therapy N Engl J Med 360;1:53–62.

  26. Burr DB, Forwood MR, Fyhrie DP, et al. Perspective: bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  PubMed  CAS  Google Scholar 

  27. Chavassieux PM, Arlot ME, Reda C, et al. Histomorphometric assessment of longterm effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997;100:1475–80.

    Article  PubMed  CAS  Google Scholar 

  28. Whyte MP, Wenkert D, Clements KL, et al. Bisphosphonate induced osteopetrosis. N Engl J Med. 2003;349:457–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieda Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, F. Atypical diaphyseal femoral fractures—new aspects . Skeletal Radiol 41, 75–81 (2012). https://doi.org/10.1007/s00256-011-1130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-011-1130-6

Keywords

Navigation