Skip to main content
Log in

Mesenchymal stem and progenitor cells for cartilage repair

  • Perspective
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 2002; 10: 432–463.

    Article  PubMed  CAS  Google Scholar 

  2. Hunziker EB. Articular cartilage repair: problems and perspectives. Biorheology 2000; 37: 163–164.

    PubMed  CAS  Google Scholar 

  3. Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol 2005; 94: 91–123.

    PubMed  CAS  Google Scholar 

  4. Boyle J, Luan B, Cruz TF, et al. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthr Cartil 1995; 3: 117–125.

    Article  PubMed  CAS  Google Scholar 

  5. Chuma H, Mizuta H, Kudo S, et al. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthr Cartil 2004; 12: 834–842.

    Article  PubMed  CAS  Google Scholar 

  6. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.

    Article  PubMed  CAS  Google Scholar 

  7. zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 2005; 5: 1.

    Article  PubMed  CAS  Google Scholar 

  8. Vats A, Bielby RC, Tolley N, et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 2006; 12: 1687–1697.

    Article  PubMed  CAS  Google Scholar 

  9. Kramer J, Hargus G, Rohwedel J. Derivation and characterization of chondrocytes from embryonic stem cells in vitro. Methods Mol Biol 2006; 330: 171–190.

    PubMed  CAS  Google Scholar 

  10. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.

    Article  PubMed  CAS  Google Scholar 

  11. Kim J, Lee Y, Kim H, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40: 75–90.

    Article  PubMed  CAS  Google Scholar 

  12. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  PubMed  CAS  Google Scholar 

  13. Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11: 1198–1211.

    Article  PubMed  CAS  Google Scholar 

  14. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  PubMed  CAS  Google Scholar 

  15. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005; 7: 393–395.

    Article  PubMed  CAS  Google Scholar 

  16. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267–274.

    PubMed  CAS  Google Scholar 

  17. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.

    Article  PubMed  CAS  Google Scholar 

  18. Otto WR, Rao J. Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 2004; 37: 97–110.

    Article  PubMed  CAS  Google Scholar 

  19. Leo AJ, Grande DA. Mesenchymal stem cells in tissue engineering. Cells Tissues Organs 2006; 183: 112–122.

    Article  PubMed  CAS  Google Scholar 

  20. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8: 301–316.

    Article  PubMed  CAS  Google Scholar 

  21. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521–2529.

    Article  PubMed  Google Scholar 

  22. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 2005; 13: 845–853.

    Article  PubMed  Google Scholar 

  23. Huang JI, Kazmi N, Durbhakula MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 2005; 23: 1383–1389.

    PubMed  CAS  Google Scholar 

  24. Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 2006; 54: 843–853.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327: 449–462.

    Article  PubMed  CAS  Google Scholar 

  26. Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 2004; 18: 980–982.

    PubMed  CAS  Google Scholar 

  27. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.

    Article  PubMed  CAS  Google Scholar 

  28. Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 2004; 6: R422–R432.

    Article  PubMed  CAS  Google Scholar 

  29. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117: 889–897.

    Article  PubMed  CAS  Google Scholar 

  30. Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 2006; 8: 559–561.

    Article  PubMed  CAS  Google Scholar 

  31. Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50: 1522–1532.

    Article  PubMed  Google Scholar 

  32. Bonyadi M, Waldman SD, Liu D, et al. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003; 100: 5840–5845.

    Article  PubMed  CAS  Google Scholar 

  33. Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum 2007; 56: 177–187.

    Article  PubMed  Google Scholar 

  34. Robinson D, Nevo Z. Articular cartilage chondrocytes are more advantageous for generating hyaline-like cartilage than mesenchymal cells isolated from microfracture repairs. Cell Tissue Bank 2001; 2: 23–30.

    Article  PubMed  CAS  Google Scholar 

  35. Huang JI, Durbhakula MM, Angele P, et al. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J Bone Joint Surg Am 2006; 88: 744–752.

    Article  PubMed  Google Scholar 

  36. Shao X, Goh JC, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 2006; 12: 1539–1551.

    Article  PubMed  CAS  Google Scholar 

  37. Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10: 199–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita A. Kandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, N., Stanford, W.L. & Kandel, R.A. Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 36, 909–912 (2007). https://doi.org/10.1007/s00256-007-0333-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-007-0333-3

Navigation