Skip to main content
Log in

In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To examine in vivo time-course changes in macromolecular composition of articular cartilage in two surgical models of osteoarthritis (goat: meniscal transection and cartilage incision; rabbit: medial meniscectomy).

Design

Collagen integrity and proteoglycan (PG) content were evaluated in both models by magnetization transfer (MT) and contrast-enhanced MRI, respectively. The MT rate k m for the exchange process between the bulk water and water bound to collagen was determined as a marker of the collagen network. Local changes in cartilage fixed charge density, i.e., where PGs are depleted, were derived from T1 relaxation maps as obtained after an infusion of Gd(DTPA)2−, a paramagnetic agent.

Results

In the goat model, the MT rate constant k m was significantly higher at 2 weeks post surgery, a possible sign of cartilage swelling, then decreased below baseline values, most likely indicative of disruption in the collagen framework. Meanwhile, post-Gd(DTPA)2− MRI acquisition indicated a significant and sustained loss of PGs. The rabbit model produced milder lesions. Although the difference was non-significant, k m steadily decreased in response to the surgical insult while kinetics of Gd(DTPA)2− uptake, after reaching a peak level at 6 weeks, were back to normal values after 12 weeks.

Conclusion

In the goat model, joint instability and cartilage damage was a permanent trigger for cartilage degeneration producing MRI changes. However, biomechanical stress due to partial medial meniscectomy in knees of mature rabbits produced only mild, focal lesions and PG depletion that was partially reversible. This proof-of-concept study identified MT and T1 parameters as useful surrogate markers in animal models of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buckwalter JA, Lane NE. Aging, sports and osteoarthritis. Sports Med Arthrosc Rev 1996; 4:276–287

    Article  Google Scholar 

  2. Lohmander LS. Articular cartilage and osteoarthritis. The role of molecular markers to monitor breakdown, repair and disease. J Anat 1994; 184:477–492

    PubMed  CAS  Google Scholar 

  3. Kempson GE. The mechanical properties of articular cartilage. In: Sokoloff L, editor. The joints and synovial fluid. Vol. II. Academic Press, New York 1980:177–238

    Google Scholar 

  4. Grushko G, Schneiderman R, Maroudas A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tiss Res 1989; 19:149–176

    Article  CAS  Google Scholar 

  5. Maroudas A, Wachtel E, Grushko G, Katz EP, Weinberg P. The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim Biophys Acta 1991; 1073:285–294

    PubMed  CAS  Google Scholar 

  6. Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM. The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 2000; 43(10):2202–2210

    Article  PubMed  CAS  Google Scholar 

  7. Pessis E, Drape JL, Ravaud P, Chevrot A, Dougados M, Ayral X. Assessment of progression in knee osteoarthritis: results of a 1 year study comparing arthroscopy and MRI. Osteoarthritis Cartilage 2003; 11:361–369

    Article  PubMed  CAS  Google Scholar 

  8. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996; 36:665–673

    Article  PubMed  CAS  Google Scholar 

  9. Laurent D, Wasvary J, Rudin M, O’Byrne E, Pellas TC. In vivo assessment of macromolecular content in articular cartilage of the goat knee. Magn Reson Med 2003; 49:1037–1046

    Article  PubMed  CAS  Google Scholar 

  10. Laurent D, Wasvary J, Yin J, Rudin M, Pellas TC, O’Byrne E. Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. Magn Reson Imag 2001; 19(10):1279–1286

    Article  CAS  Google Scholar 

  11. Farkas T, Bihari-Varga M, Biro T. Thermoanalytical and histological study of intra-articular papain-induced degradation and repair of rabbit cartilage. II. Mature animals. Ann Rheum Dis 1976; 35:23–26

    Article  PubMed  CAS  Google Scholar 

  12. Kitoh Y, Katsuramaki T, Tanaka H, Tanaka M, Kitabayashi N, Kataoka M, Fujimori S, Umemoto J, Namba K. Effect of SL-1010 (sodium hyaluronate with high molecular weight) on experimental osteoarthritis induced by intra-articularly applied papain in rabbits. Folia Pharmacol Japon 1992; 100:67–76

    Article  CAS  Google Scholar 

  13. Van der Kraan PM, Vitters EL, van Beuningen HM, van der Putte LBA, van der Berg WB. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J Exp Pathol 1990; 71:19–31

    Google Scholar 

  14. Williams JM, Brandt KD. Immobilization ameliorates chemically-induced articular cartilage damage. Arthritis Rheum 1984; 27(2):208–216

    Article  PubMed  CAS  Google Scholar 

  15. Murphy JM, Boynton RE, Kraus KH, Cole JC, Hunziker EB, Pellas T, O’Byrne E, Barry FP. An experimental model of osteoarthritis in goats. Trans Orthop Res Soc 1999; 24:435

    Google Scholar 

  16. Laurent D, Wasvary J, O’Byrne E, Rudin M. In vivo qualitative assessments of articular cartilage in the rabbit knee with high-resolution MRI at 3T. Magn Reson Med 2003; 50:541–549

    Article  PubMed  Google Scholar 

  17. Moskowitz RW, Davis W, Sammarco J, Martens M, Baker J, Mayor M, Burstein AM, Frankel VH. Experimentally induced degenerative joint lesions following partial meniscectomy in the rabbit. Arthritis Rheum 1973; 16:397–405

    Article  PubMed  CAS  Google Scholar 

  18. Axelsson I, Berman I, Pita JC. Proteoglycans from rabbit articular and growth plate cartilage: ultracentrifugation, gel chromatography, and electron microscopy. J Biol Chem 1983; 258:8915–8921

    PubMed  CAS  Google Scholar 

  19. Manicourt DH, Pita JC, Candido F, Howell DS. Characterization of the proteoglycans recovered under nondissociative conditions from normal articular cartilage of rabbits and dogs. J Biol Chem 1986; 261(12):5426–5433

    PubMed  CAS  Google Scholar 

  20. Manicourt D, Howell DS, Moskowitz RW, Goldberg V, Malemud C, Pita JC. Application of new techniques to separation of proteoglycan aggregates from normal and destabilized rabbit articular cartilages. Acta Biol Hung 1984; 35:137–142

    PubMed  CAS  Google Scholar 

  21. Mehraban F, Kuo SY, Rierra H, Chang C, Moskowitz RW. Prostromelysin and procollagenase are differentially up-regulated in chondrocytes from knees of rabbits with experimental osteoarthritis. Arthritis Rheum 1994; 37:1189–1197

    Article  PubMed  CAS  Google Scholar 

  22. Mehraban F, Lark MW, Ahmed FN, Xu F, Moskowitz RW. Increased secretion and activity of matrix metalloproteinase-3 in synovial tissues and chondrocytes from experimental osteoarthritis. Osteoarthritis Cartilage 1998; 6:286–294

    Article  PubMed  CAS  Google Scholar 

  23. Mehraban F, Tindal MH, Profitt MM, Moskowitz RW. Temporal pattern of cysteine endopeptidase (cathepsin B) expression in cartilage and synovia from rabbits with experimental osteoarthritis: gene expression in chondrocytes in response to interleukin-1 and matrix depletion. Ann Rheum Dis 1997; 56:108–115

    Article  PubMed  CAS  Google Scholar 

  24. Tammi M, Saamanen AM, Jauhiainen A, Malminen C, Kiviranta I, Helminen H. Proteoglycan alterations in rabbit knee articular cartilage following physical exercise and immobilization. Connect Tissue Res 1983; 11(1):45–55

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong SJ, Read RA, Ghosh P, Wilson DM. Moderate exercise exacerbates the osteoarthritic lesions produced in cartilage by meniscectomy: a morphological study. Osteoarthritis Cartilage 1993; 1:89–96

    Article  PubMed  CAS  Google Scholar 

  26. Stanisz GJ, Henkelman RM. Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Med 2000; 44:665–667

    Article  PubMed  CAS  Google Scholar 

  27. Wayne JS, Kraft KA, Shields KJ, Yin C, Owen JR, Disler DG. MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 2003; 228(2):493–499

    Article  PubMed  Google Scholar 

  28. Gillis A, Gray M, Burstein D. Relaxivity of gadolinium agents in cartilage. Magn Res Med 2002; 48:1068–1071

    Article  CAS  Google Scholar 

  29. Bashir A, Nieminen M, Williams A, Burstein D. T1 of cartilage with Gd-DTPA(2-) and GdHPDO3A: Implications for dGEMRIC imaging. Proc Intl Soc Magn Reson Med, Kyoto, Japan, 2004; 11:818

    Google Scholar 

  30. Otterness IG, Swindell AC, Zimmerer RO, Poole AR, Ionescu M, Weiner E. An analysis of 14 molecular markers for monitoring osteoarthritis: segregation of the markers into clusters and distinguishing osteoarthritis at baseline. Osteoarthritis Cartilage 2000; 8:180–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Hem Nalini Singh, Jeffrey DeLeo, Gary Pastor and Vincent Blancuzzi for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Laurent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, D., O’Byrne, E., Wasvary, J. et al. In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis. Skeletal Radiol 35, 555–564 (2006). https://doi.org/10.1007/s00256-006-0133-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-006-0133-1

Keywords

Navigation