Skip to main content
Log in

Fractures of the proximal femur: correlates of radiological evidence of osteoporosis

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Fractures of the proximal femur are common sequelae of osteoporosis, and are responsible for significant morbidity and mortality in elderly patients worldwide. Plain film radiographic assessment methods to assess for fracture risk may be of particular value.

Design and patients

The authors present the results of biomechanical testing, radiographic imaging, and histologic exam of 20 embalmed human bone specimens, with implications for clinical correlation of radiologic findings. Authors assessed bone architecture using the Singh Index, using a blinded 3-rater system to reduce bias and measure intra-observer reliability. After loading to failure with ultimate tensile strength (UTS), bone specimens were assessed by fracture location type and by trabecular bone volume (TBV).

Results

Singh scoring was performed with Inter-Class Correlation of 0.80 (F=0.24, by ICC Portney Model 2). A statistically-significant difference among the UTS distributions was noted for UTS by Fracture Site (F=4.49, p=0.026, by ANOVA). No significant association of Singh Index with TBV, or TBV with UTS, was observed, although a trend toward greater UTS with higher Singh grade was observed.

Conclusions

The authors propose that the Singh Index is a valuable and reliable indicator which may reflect structural integrity in trabecular bone. Fracture site along the femur is associated with tensile strength. The authors, in the light of these findings, address the promise and potential impact of prophylactic hip augmentation in populations at risk for femoral neck pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cooper C, Melton LJ. Epidemiology of osteoporosis. Trends Endocrinol Metab 1992;314:224–229

    Google Scholar 

  2. Aaron JE, Gallagher JC, Anderson J, Stasiak L, Longton EB, Nordin BEC, Nicholson M. Frequency of osteomalacia and osteoporosis in fractures of the proximal femur. Lancet 1974;229:233

    Google Scholar 

  3. Robbins S, Cotran R, Kumar V. Pathological basis of disease. Philadelphia, Saunders 1984;1327–1329

    Google Scholar 

  4. WHO. Assessment of fracture risk and its application to screening for post-menopausal osteoporosis. World Health Organization Technical Report 843. Geneva; 1994

  5. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A. Risk of hip fracture according to the world health organization criteria for osteopenia and osteoporosis. Bone 2000;27:585–590

    Article  PubMed  CAS  Google Scholar 

  6. Walter JB, Israel MS. General pathology. UK, Churchill Livingston, 1987. p 326

    Google Scholar 

  7. Melton LJ, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 1997;12:1083–1091

    Article  PubMed  Google Scholar 

  8. Van Staa TP, Abenhaim L, Cooper C, Zhang B, Leufkens HG. Public health impact of adverse bone effects of oral corticosteroids. Br J Clin Pharmacol 2001;51:601–607

    Article  PubMed  Google Scholar 

  9. Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 1970;52:457–467

    PubMed  CAS  Google Scholar 

  10. Meunier PJ. Bone histomorphometry in primary osteoporosis. New York, Grune & Stratton, 1979. pp 27–47

    Google Scholar 

  11. Majumdar S, Weinstein RS, Prasad RR. Application of fractal geometry techniques to the study of trabecular bone. Med Phys 1993;20:1611–1619

    Article  PubMed  CAS  Google Scholar 

  12. Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W.Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 1994;9:1909–1918

    Article  PubMed  CAS  Google Scholar 

  13. Prouteau S, Ducher G, Nanyan P, Lemineur G, Benhamou L, Courteix D. Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur J Clin Investig 2004;34:137–142

    Article  CAS  Google Scholar 

  14. Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 2002;30:759–764

    Article  PubMed  CAS  Google Scholar 

  15. Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, Combs KS, Higgins RE, Pierce SA, Stevens ML. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res 2000;15:1786–1797

    Article  PubMed  CAS  Google Scholar 

  16. Homminga J, Mccreadie BR, Weinans H, Huiskes R. The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech 2003;36:1461–1467

    Article  PubMed  Google Scholar 

  17. Zioupos P. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc; 2001. 201(pt2):270–278

    Article  CAS  Google Scholar 

  18. DeLee JC. Fractures and dislocations of the hip. In: Rockwood CA, Green DP (eds) Fractures in Adults. Philadelphia, Lippincott, 1975. p 1218

    Google Scholar 

  19. Garden RS. Malreduction and avascular necrosis in subcapital fracture of the femur. J Bone Joint Surg 1971;53:183–197

    PubMed  CAS  Google Scholar 

  20. Gooding H, Steward D. Laboratory Journal 1932;7:55

    Google Scholar 

  21. Coupron P. Amount of bone in iliac crest biopsy: significance of trabecular bone volume. In: Bone Histomorphometry, Second International Workshop. Armour Montague, Paris. 1976;335–354

    Google Scholar 

  22. Backman S. The proximal end of the femur. Acta Radiological 1957;146:S1–S161

    Google Scholar 

  23. Hamilton WJ. Textbook of human anatomy. London, McMillan, 1976. p 28

    Google Scholar 

  24. Townsley W. The influence of mechanical factors on the development and structure of bone. Am J Phys Anthropol 1948;6:25–39

    Article  CAS  PubMed  Google Scholar 

  25. Tobin WJ. The internal structure of the head of the femur and its clinical significance. J Bone Joint Surg Am 1955;37:57–71

    PubMed  Google Scholar 

  26. Griffith WEG, Swanson SAV, Freeman MAR. Experimental fatigue fracture of the human cadaveric femur. J Bone Joint Surg Br 1976;53:136–143

    Google Scholar 

  27. Finlay JB, Hardie R, Rorabeck CH. Effect of embalming upon the ultrasonic stiffness of bovine cortical bone. Orthopedic Transactions 1994;18:140–141

    Google Scholar 

  28. Finlay JB, Hardie WR, Coups K, Liggins AB, Shemerluk R, Lysynski B. Embalming effects upon the mechanical properties of bone: preliminary experiments. In: Little EG, Ed. Experimental Mechanics. Amsterdam, Elsevier, 1992. pp 185–200

    Google Scholar 

  29. Kantor SM, Ossa KS, Hoshaw-Woodard SL, Lemeshow S.Height loss and osteoporosis of the hip. J Clin Densitom 2004;7:65–70

    Article  PubMed  Google Scholar 

  30. Xu L, McElduff P, D'Este C, Attia J. Does dietary calcium have a protective effect on bone fractures in women? A meta-analysis of observational studies. Br J Nutr 2004;91:625–634

    Article  PubMed  CAS  Google Scholar 

  31. Barondess DA, Singh M, Hendrix SL, Nelson DA. Radiographic measurements, bone mineral density, and the Singh Index in the proximal femur of white and black postmenopausal women. Dis Mon 2002;48:637–646

    Article  PubMed  Google Scholar 

  32. Smyth PP, Adams JE, Whitehouse RW, Taylor CJ. Application of computer texture analysis to the singh index. Br J Radiol 1997;70:242–247

    PubMed  CAS  Google Scholar 

  33. Moon MS, Kim SS, Moon JL, Moon YW. Strenuous walking exercise and spontaneous fracture of the femoral neck in the elderly. Journal of Orthopedic Surgery 2000;8:39–43

    Google Scholar 

  34. Cooper C. The crippling consequences of fractures and their impact on quality of life. Am J Med 1997;103:12s–17s

    Article  PubMed  CAS  Google Scholar 

  35. Sernbo I, Johnell O. Consequences of a hip fracture: a prospective study over 1 year. Osteoporos Int 1993;3:148–153

    Article  PubMed  CAS  Google Scholar 

  36. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992;2:285–289

    Article  PubMed  CAS  Google Scholar 

  37. Ettinger MP. Aging bone and osteoporosis: strategies for preventing fractures in the elderly. Arch Intern Med 2003;163:2237–2246

    Article  PubMed  Google Scholar 

  38. Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE, van der Klift M, Pols HA. Use of statins and fracture: results of 4 prospective studies and cumulative metaanalysis of observational studies and controlled trials. Arch Intern Med 2004;164:146–152

    Article  PubMed  CAS  Google Scholar 

  39. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 2000;39:1410–1414

    Article  PubMed  CAS  Google Scholar 

  40. Zoarski GH, Snow P, Olan WJ et al. Percutaneous vertebroplasty for osteoporotic compression fractures: quantitative prospective evaluation of long-term outcomes. J Vasc Interv Radiol 2002;13:139–148

    Article  PubMed  Google Scholar 

  41. Evans A, Jensen M, Kip K, DeNardo A, Lawler G, Negin G, Remley K, Boutin S, Dunnagan S. Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty: retrospective report of 245 cases. Radiology 2003;226:366–372

    Article  PubMed  Google Scholar 

  42. Jensen ME, Dion JE. Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin N Am 2000;10:547–568

    PubMed  CAS  Google Scholar 

  43. Murphy KJ, Deramond H. Percutaneous vertebroplasty in benign and malignant disease. Neuroimaging Clin N Am 2000;10:535–545

    PubMed  CAS  Google Scholar 

  44. Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999;24:1521–1526

    Article  PubMed  CAS  Google Scholar 

  45. Belkoff SM, Maroney M, Fenton DC, Mathis JM. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999;25:23S–26S

    Article  PubMed  CAS  Google Scholar 

  46. Sun K, Liebschner MA. Biomechanics of prophylactic vertebral reinforcement. Spine 2004;13:1428–1435

    Article  Google Scholar 

  47. Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R. Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech 2004;19:506–512

    Article  Google Scholar 

  48. Damron TA, Heiner JP, Freund EM, Damron LA, McCabe R, Vanderby R. A biomechanical analysis of prophylactic fixation for pathological fractures of the distal third of the humerus. J Bone Joint Surg Am 1994;76:839–847

    PubMed  CAS  Google Scholar 

  49. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 1987;33:166–168

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor J. B. Coakley and the Staff of University College Dublin for their advice and direction, and Professors W. S. Monkhouse, P. Kelleghan and E. Clarke for their time and assistance. Acknowledgement is also due to Margaret Fenwick for assistance in manuscript production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil H. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.H., Murphy, K.P. Fractures of the proximal femur: correlates of radiological evidence of osteoporosis. Skeletal Radiol 35, 202–211 (2006). https://doi.org/10.1007/s00256-005-0065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-005-0065-1

Keywords

Navigation