Skip to main content
Log in

Natural seabed gas seeps as sources of atmospheric methane

  • Original Article
  • Published:
Environmental Geology

Abstract

Microbial and thermogenic methane migrates towards the seabed where some is utilised during microbially-mediated anaerobic oxidation. Excess methane escapes as gas seeps, which occur in a variety of geological contexts in every sea and ocean, from inter-tidal zones to deep ocean trenches. Some seeps are localised, gentle emanations; others are vigorous covering areas of >1 km2; the most prolific seeps reported (offshore Georgia) produce ~40 t CH4 per year. Gas bubbles lose methane to the water as they rise, so deep water seeps are unlikely to contribute to the atmosphere. However, bubbles break the surface above some shallow water seeps. Estimates of the total methane contribution to the atmosphere are poorly constrained, largely because the data set is so small. 20 Tg yr−1 is considered a realistic first approximation. This is a significant contribution to the global budget, particularly as methane from seeps is 14C-depleted. A seep measurement programme is urgently required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharon P (1994) Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: An Introduction. Geo-Marine Lett. 14:69–73

  • Bauer JE, Spies RB, Vogel JS, Nelson DE, and Southon JR (1990) Radiocarbon evidence of fossil-carbon cycling in sediments of a nearshore hydrocarbon seep. Nature: 348, 230–232.

  • Boetius AG, Ravenschlag KL, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Boles JR, Clark JF, Leifer I, Washburn, L (2001) Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California J. Geophys. Res., 106:27,077–27,086

    Google Scholar 

  • Brewer, PG, Orr JFM, Friederich G, Kvenvolden KA, Orange DL (1998) Gas hydrate formation in the deep sea: in situ experiments with controlled release of methane, natural gas, and carbon dioxide Energy & Fuels, 12:183–188

  • Clarke RH, Cleverly RW (1991) Petroleum seepage and post-accumulation migration. In: England WA, Fleet JA (Eds) Petroleum migration. Geological Society Publication, Geological Society Publication, 265–271

  • Clayton C (1992) Source volumetrics of biogenic gas generation. In, Vially R (Ed.) Bacterial Gas. Editions Technip, Paris, 191–204

  • Clayton CJ, Dando PR (1996) Comparison of seepage and seep leakage rates. In: Schumacher D, Abrams MA (Eds), Hydrocarbon migration and its near-surface expression. American Assoc. Petrol. Geol., 169–171

  • Cranston RE (1994) Marine sediments as a source of atmospheric methane. Bull. Geol. Soc. Denmark, 41:101–109

    Google Scholar 

  • Cranston RE, Ginsburg GD, Soloviev VA, Lorenson TD (1994) Gas venting and hydrate deposits in the Okhotsk Sea. Bull. Geol. Soc. Denmark, 41:80–85

    Google Scholar 

  • Cyanar FJ, Yayanos A (1992) The distribution of methane in the upper waters of the Southern California bight. J. Geophys. Res., 97:11,269–11,285

    Google Scholar 

  • Dando PR, O’Hara SCM, Schuster U, Taylor LJ, Clayton C, Baylis S, Laier T (1994) Gas seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark. Marine & Petrol. Geol., 11:182–190

    Google Scholar 

  • Dimitrov L (2002a) Contribution to atmospheric methane by natural seepages on the Bulgarian Continental Shelf. Cont. Shelf Res., 22:2429–2442

    Google Scholar 

  • Dimitrov L (2002b) Mud volcanoes: the most important pathway for degassing deeply buried sediments. Earth-Sciences Review, 59:49–76

    Google Scholar 

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M, Berntsen T, Bey I, Brasseur G, Buja L, Collins WJ, Daniel J, DeMore WB, Derek N, Dickerson R, Etheridge D, Feichter J, Fraser P, Friedl R, Fuglestvedt J, Gauss M, Grenfell L, Grübler A, Harris N, Hauglustaine D, Horowitz L, Jackman C, Jacob D, Jaeglé L, Jain A, Kanakidou M, Karlsdottir S, Ko M, Kurylo M, Lawrence M, Logan JA, Manning M, Mauzerall D, McConnell J, Mickley L, Montzka S, Müller JF, Olivier J, Pickering K, Pitari G, Roelofs GJ, Rogers H, Rognerud B, Smith S, Solomon S, Staehelin J, Steele P, Stevenson D, Sundet J, Thompson A, van Weele M, von Kuhlmann R, Wang Y, Weisenstein D, Wigley T, Wild O, Wuebbles D, Yantosca R (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT,Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 241–287

  • Etiope G, Klusman RW (2002). Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Article  CAS  PubMed  Google Scholar 

  • Etiope G, Milkov AV (2004). A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. This volume

  • Fleischer P, Orsi TH, Richardson MD, Anderson AL (2001) Distribution of free gas in marine sediments: a global overview. Geo-Marine Lett. 21:103–122

    Google Scholar 

  • Garcià-Gil S (2002) A natural laboratory for shallow gas: the Rías Baixas (Spain). Geo-Marine Lett. 23:215–229, DOI 10.1007/s00367-003-0159-5

    Google Scholar 

  • Grant NJ, Whiticar MJ (2002) Stable carbon isotope evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Global Biogeochem. Cycles, 16: DOI:10.1029/2001GB001851

  • Heeschen KU, Tréhu AM, Collier RW, Suess E, Rehder G (2003) Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys. Res. Lett. 30: DOI 10.1029/2003GL016974

  • Hinchcliffe JC (1978) Death stalks the secret coast. Triton 23:56–57

    Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocaron seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J. Geophys. Res. 104:20703–20711

    Google Scholar 

  • Hovland M (2002) On the self-sealing nature of marine seeps. Cont. Shelf Res., 22:2387–2394

    Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London, Graham and Trotman, London, 293pp

    Google Scholar 

  • Hovland M, Judd AG, Burke Jr. RA (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26:559–578

    Article  CAS  Google Scholar 

  • Judd AG (2000) Geological sources of methane. In: Khalil, M.A.K. (Ed), Atmospheric methane: It’s role in the global environment. Springer, Berlin, Springer, Berlin, 280–303

  • Judd AG (2003) The global importance and context of methane escape from the seabed. Geo-Marine Lett. DOI 10.1007/s00367–003–0136-z

  • Judd AG, Davies G, Wilson J, Holmes R, Brown G, Bryden I (1997) Contribution to atmospheric methane by natural seepages on the UK Continental Shelf. Marine Geol. 137:165–189

    Google Scholar 

  • Judd AG, Hovland M (1992) The evidence of shallow gas in marine sediments. Cont. Shelf Res. 12:1081–1096

    Google Scholar 

  • Judd AG, Jukes V, Leddra MJ (2002a) MAGIC: A GIS database of Marine Gas seeps and seep IndiCators. Russian Geol. & Geophys. 43:599–604

  • Judd AG, Long D, Sankey M (1994) Pockmark formation and activity, U.K. Block 15/25, North Sea. Bull. Geol. Soc. Denmark 14:34–49

    Google Scholar 

  • Judd AG, Sim R, Kingston P, McNally J (2002b) Gas seepage on an intertidal site: Torry Bay, Firth of Forth, Scotland. Cont. Shelf Res., 22:2317–2331

  • Klemme HD (1987) The geology of future petroleum resources. In: Foster NA, Beaumont EA (Compilers) Geologic Basins II. Treatise on Petroleum Geology Reprint series 2, Am. Assoc. Petrol. Geol., 387–407

  • Kubala M, Bastow M, Thompson S, Scotchman I, Oygard K (2003) Geothermal regime, petroleum generation and migration. In: Evans D, Graham C, Armour A, Bathurst P (eds and co-ordinators) The Millenium Atlas: petroleum geology of the central and northern North Sea., Geol. Soc. London, 289–315

  • Kvenvolden KA (1998) A Primer on the geological occurrence of gas hydrate. In: Henriet J-P, Mienert J (Eds), Gas hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London, Sp. Publ 137:9-30

    CAS  Google Scholar 

  • Kvenvolden KA (2002) Methane hydrate in the global carbon cycle. Terra Nova, 14:302–306

    Google Scholar 

  • Kvenvolden KA, Lorenson TD, Reeburgh W (2001) Attention turns to naturally occurring methane seepage. Eos 82:457.

    Google Scholar 

  • Lacroix AV (1993) Unaccounted for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory. Chemosphere 26:507–557

    Article  CAS  Google Scholar 

  • Lambert G, Schmidt S (1993) Reevaluation of the oceanic flux of methane: uncertainties and long term variations. Chemosphere 26:579–590

    Article  CAS  Google Scholar 

  • Landes KK (1973) Mother Nature as an oil polluter. American Assoc. Petrol. Geol. Bull. 57:637–641

    Google Scholar 

  • Leifer I, Clark J (2002) Modeling trace gases in hydrocarbon seep bubbles. Application to marine hydrocarbon seeps in the Santa Barbara Channel. Russian Geol. & Geophys. 43:613–621

    Google Scholar 

  • Leifer I, Patro RK (2002) The bubble mechanism for methane transport from the shallow seabed to the surface: A review and sensitivity study. Cont. Shelf Res. 22:2409–2428

    Google Scholar 

  • Link WK (1952) Significance of oil and gas seeps in world oil exploration. American Assoc. Petrol. Geol. Bull. 36:1505–1541

  • Linke P, Suess E, Torres M, Martens V, Rugh WD, Ziebis W, Kulm LD (1994) In situ measurement of fluid flow from cold seeps at active continental margins. Deep Sea Research I, 41:721–739

    Google Scholar 

  • Long D, Lammers S, Linke P (1998) Possible hydrate mounds within large sea-floor craters in the Barents Sea. In: Henriet J-P, Mienert J (Eds), Gas hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London, Sp. Publ 137:223–237

    CAS  Google Scholar 

  • MacDonald IR, Leifer I, Sassen R, Steine P, Mitchell R, Guinasso N (2002) Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids 2:95–107

    Article  CAS  Google Scholar 

  • Martens CS, Klump JV (1980) Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment-water exchange processes. Geochim. et Cosmochim. Acta 44:471–490

    Article  CAS  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geol. 167:29–42

    Google Scholar 

  • Rehder G, Suess E (2001) Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chem. 75:89–108

    Google Scholar 

  • Rice DD (1992) Controls, habitat, and resource potential of ancient bacterial gas. In: Vially R (Ed.) Bacterial Gas, Editions Technip, Paris, 91–118

  • Sassen R, Losh SL, Cathles L III, Roberts HH, Whelan JK, Milkov AV, Sweet ST, DeFreitas DA (2001) Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico. Mar. & Petrol. Geol. 18:551–560

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. 45:517–567

    Google Scholar 

  • Solheim A, Elverhøi A (1985) A pockmark field in the Central Barents Sea; gas from a petrogenic source. Polar Res., 3:11–19

    Google Scholar 

  • Soloviev VA (2002) Global estimation of gas content in submarine gas hydrate accumulations. Russian Geol. & Geophys., 43:648–661

  • Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Lammers S, Sahling H, Winckler G, Lutz RA, Orange DL (1998) Fluid venting in the eastern Aleutian subduction zone. J. Geophys. Res. 103:2597–2614

    Google Scholar 

  • Suess E, Torres M, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth & Plan. Sci. Lett. 170:1–15

    Google Scholar 

  • Tkeshelashvili GI, Egorov VN, Mestvirishvili SA, Parkhaladze GS, Gulin MB, Gulin SB, Artemov YG (1997) Methane emissions from the Black Sea bottom in the mouth zone of the Supsa River at the coast of Georgia. Geochem. Internat., 35:284–288

  • Trotsyuk VY, Avilov VI (1988) Disseminated flux of hydrocarbon gases from the sea bottom and a methods of measuring it. Doklady Earth Sci., 291:218–220

    Google Scholar 

  • Tryon M, Brown K, Dorman L, Sauter A (2001) A new benthic aqueous flux meter for very low to moderate discharge rates. Deep-Sea Res. I 48:2121–2146

    Google Scholar 

  • Whiticar MJ (2000) Can stable isotopes and global budgets be used to constrain atmspheric methane budgets? In: Khalil MAK (Ed), Atmospheric methane: It’s role in the global environment. Springer, Berlin, Springer, Berlin, 63–85

  • Wilson RD, Monaghan PH, Osanik A, Price LC, Rogers MA (1974) Natural marine oil seepage. Science 184:857–865

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the helpful comments and suggestions made by Alexei Milkov and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Judd.

Additional information

GEM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judd, A.G. Natural seabed gas seeps as sources of atmospheric methane. Env Geol 46, 988–996 (2004). https://doi.org/10.1007/s00254-004-1083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1083-3

Keywords

Navigation