Skip to main content
Log in

Potential metabolic limitations in lysine production by Corynebacterium glutamicum as revealed by metabolic network analysis

  • Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of the metabolic network of lysine-producing Corynebacterium glutamicum showed that lysine yields are limited by the excess energy production in lysine biosynthesis. The most probable maximum yield is 0.47 mol/mol on glucose, when phosphoenolpyruvate carboxylase functions in an anaplerotic rection. When this function is fulfilled by the glyoxylate pathway, a maximum yield of 0.38 mol/mol is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babel W, Müller RH (1985) Mixed substrate utilization in microorganisms: biochemical aspects and energetics. J Gen Microbiol 131:39–45

    Google Scholar 

  • Broër S, Krämer R (1991) Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202:137–143

    Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57:1746–1752

    Google Scholar 

  • Ertan H (1992) Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae. Arch Microbiol 158:35–41

    Google Scholar 

  • Gommers PJF, Van Schie BJ, Van Dijken JP, Kuenen JG (1988) Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization. Biotechnol Bioeng 32:86–94

    Google Scholar 

  • Hirao T, Nakano T, Azum T, Sigimoto M, Nakanishi T (1989) Lysine production in continuous culture of an L-lysine hyperproducing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol 32:269–273

    Google Scholar 

  • Hollander JA de (1991a) The use of stoichiometric relations for the description and analysis of microbial cultures. Antonie van Leeuwenhoek 60:257–273

    Google Scholar 

  • Hollander JA de (1991b) Application of a metabolic balancing technique to the analysis of microbial fermentation data. Antonie van Leeuwenhoek 60:275–292

    Google Scholar 

  • Ishino S, Shimomura-nishimuta J, Yamaguchi K, Shirahata K, Araki K (1991) 13C nuclear magnetic resonance studies of glucose metabolism in L-glutamic acid and L-lysine fermentation by Corynebacterium glutamicum. J Gen Appl Microbiol 37:157–165

    Google Scholar 

  • Kawahara Y, Tanaka T, Ikeda S, Sone N (1988) Coupling sites of the respiratory chain of Brevibacterium lactofermentum. Agric Biol Chem 52:1979–1983

    Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL and Solomon NA (eds) Biology of industrial microorganisms. Benjamin/Cummings, London, pp 115–142

    Google Scholar 

  • Kiss RD, Stephanopoulos G (1992) Metabolic characterization of a L-lysine-producing strain by continuous culture. Biotechnol Bioeng 39:565–574

    Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94

    Google Scholar 

  • Linton JD (1990) The relationship between metabolite production and the growth efficiency of the producing organism. FEMS Microbiol Rev 75:1–18

    Google Scholar 

  • Malin GM, Bourd GI (1991) Phosphotransferase-dependent glucose transport in Corynebacterium glutamicum. J Appl Bacteriol 71:517–523

    Google Scholar 

  • Michalski HJ, Krzystek L, Blaszczyk R, Jamroz T, Wieczorek A (1984) The effect of mean residence time and aeration intensity on the L-lysine production in a continuous system. Proceedings of the Third European Congress on Biotechnology vol 2. Verlag Chemie, Weinheim, pp 527–532

    Google Scholar 

  • Mori M, Shiio I (1987) Phosphoenolpyruvate: sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum. Agric Biol Chem 51:2671–2678

    Google Scholar 

  • Nakayama K (1985) Lysine. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1. Pergamon, New York, pp 605–616

    Google Scholar 

  • Neishtadt-Abramovich SR, Sineokaya IV, Krillova NM, Sitseva ZM, Astaurova OB (1990) Ammonium assimilation in a lysine-producing Brevibacterium species. Biotekhnologiya 6:8–11

    Google Scholar 

  • Oh NS, Sernetz M (1993) Turnover characteristics in continuous L-lysine fermentation. Appl Microbiol Biotechnol 39:691–695

    Google Scholar 

  • Papoutsakis ET, Meyer CL (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioeng 27:50–66

    Google Scholar 

  • Peters-Wendisch PG, Eikmanns BJ, Thierbach G, bachmann B, Sahm H (1993) Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production. Fems Microbiol Lett 112:269–274

    Google Scholar 

  • Roels JA (1983) Energetic and kinetics in biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Ruklisha MP, Marauska MF, Viesturs UE (1978) Regulation of enzymes of glucose and acetic acid metabolism by lysine producer Brevibacterium flavum. Microbiology (Engl Transl Mikrobiologiya) 47:992–996

    Google Scholar 

  • Sano K, Ito K, Miwa K, Nakamori S (1987) Amplification of the phosphoenolpyruvate carboxylase gene of Brevibacterium lactofermentum to improve amino acid production. Agric Biol Chem 51:597–599

    Google Scholar 

  • Shvinka YE, Viestur UE, Toma MK (1979) Alternative pathways of oxidation in the respiratory chain of Brevibacterium flavum. Microbiology (Engl Transl Mikrobiologiya) 48:10–16

    Google Scholar 

  • Shvinka J, Viesturs U, Ruklisha M (1980) Yield regulation of lysine biosynthesis in Brevibacterium flavum. Biotechnol Bioeng 22:897–912

    Google Scholar 

  • Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutanicum. Quantification by 13C-NMR and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331

    Google Scholar 

  • Stephanopoulos G, Sinskey AJ (1993) Metabolic engineering —methodologies and future prospects. Trends Biotechnol 11:392–396

    Google Scholar 

  • Tsai SP, Lee YH (1988). Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data. Biotechnol Bioeng 32:713–715

    Google Scholar 

  • Tosaka O, Enei H, Hirose Y (1983) The production of L-lysine by fermentation. Trends Biotechnol 3:70–74

    Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Hollander, J.A. Potential metabolic limitations in lysine production by Corynebacterium glutamicum as revealed by metabolic network analysis. Appl Microbiol Biotechnol 42, 508–515 (1994). https://doi.org/10.1007/BF00173913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173913

Keywords

Navigation