Skip to main content
Log in

Impacts of dispersants on microbial communities and ecological systems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Accidental oil spills can result in catastrophic ecological insults and therefore require rapid intervention to mitigate the potential impacts to aquatic ecosystems. One of the largest oil spills, known as the Deepwater Horizon oil spill, occurred in the Spring of 2010 near the coast of Louisiana (USA) due to an explosion during oil drilling activities. Millions of gallons of oil were released into the Gulf of Mexico, impacting thousands of ocean miles and coastal areas linked to the gulf. Among the actions taken during the remediation efforts was the unprecedented large use of Corexit dispersants, including at the subsurface to prevent oil from reaching the surface. While there is evidence that dispersants can accelerate the biodegradation of oil, reports on their potential toxicity to aquatic biota and to microbial functions have also been documented. In this review, we will examine the most recent literature on the impact of dispersants on microbial communities implicated in oil degradation and overall ecological networks. The primary focus will be on studies using Corexit but other dispersants will be discussed if data are available. We will share the literature gaps identified and discuss future work that is needed to reconcile some of the discrepancies found on the effectiveness of dispersants on oil degradation and their potential toxicity.

Key points

Chemical dispersants have been applied as a chemical response measure for oil spills.

The effects of chemical dispersants on microbial communities have been the subject of substantial research.

This work seeks to review recent work on the impact of chemical dispersants on oil biodegradation, microbial communities, and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeda R, Hyatt C, Buskey EJ (2014) Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicol Environ Saf 106:76–85

    Article  CAS  Google Scholar 

  • Almeda R, Connelly TL, Buskey EJ (2014a) Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea. Sci Rep-Uk 4 ARTN 7560 https://doi.org/10.1038/srep07560

  • Atlas RM, Hazen TC (2011) Oil Biodegradation and bioremediation: a tale of the two worst spills in US history. Environ Sci Technol 45(16):6709–6715. https://doi.org/10.1021/es2013227

    Article  CAS  Google Scholar 

  • Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02780.x

    Article  Google Scholar 

  • Barron MG (2012) Ecological impacts of the Deepwater Horizon oil spill: implications for immunotoxicity. Toxicol Pathol 40(2):315–320. https://doi.org/10.1177/0192623311428474

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Heintz R, Rice SD (2004) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78(1):60–67

    Article  CAS  Google Scholar 

  • Barron MG, Hemmer MJ, Jackson CR (2013) Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions. Integr Environ Assess Manag 9(4):610–615

    Article  CAS  Google Scholar 

  • Barron MG, Vivian DN, Heintz RA, Yim UH (2020) Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environ Sci Technol 54(11):6456–6467

    Article  CAS  Google Scholar 

  • Bejarano AC (2018) Critical review and analysis of aquatic toxicity data on oil spill dispersants. Environ Toxicol Chem 37(12):2989–3001. https://doi.org/10.1002/etc.4254

    Article  CAS  Google Scholar 

  • Brakstad OG, Nordtug T, Throne-Holst M (2015) Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull 93(1–2):144–152. https://doi.org/10.1016/j.marpolbul.2015.02.006

    Article  CAS  Google Scholar 

  • Brakstad OG, Ribicic D, Winkler A, Netzer R (2018) Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant. Mar Pollut Bull 129(2):555–561

    Article  CAS  Google Scholar 

  • Brakstad OG, Storseth TR, Brunsvik A, Bonaunet K, Faksness LG (2018) Biodegradation of oil spill dispersant surfactants in cold seawater. Chemosphere 204:290–293. https://doi.org/10.1016/j.chemosphere.2018.04.051

    Article  CAS  Google Scholar 

  • Cai QH, Zhu ZW, Chen B, Lee K, Nedwed TJ, Greer C, Zhang BY (2021) A cross-comparison of biosurfactants as marine oil spill dispersants: governing factors, synergetic effects and fates. J Hazard Mater 416 ARTN 126122 https://doi.org/10.1016/j.jhazmat.2021.126122

  • Campo P, Venosa AD, Suidan MT (2013) Biodegradability of Corexit 9500 and dispersed South Louisiana crude oil at 5 and 25 degrees C. Environ Sci Technol 47(4):1960–1967. https://doi.org/10.1021/es303881h

    Article  CAS  Google Scholar 

  • Cao Y, Kang Q, Zhang B, Zhu Z, Dong G, Cai Q, Lee K, Chen B (2022) Machine learning-aided causal inference for unraveling chemical dispersant and salinity effects on crude oil biodegradation. Bioresour Technol 345:126468. https://doi.org/10.1016/j.biortech.2021.126468

    Article  CAS  Google Scholar 

  • Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology 3 ARTN 357 https://doi.org/10.3389/fmicb.2012.00357

  • Chandrasekar S, Sorial GA, Weaver JW (2006) Dispersant effectiveness on oil spills–impact of salinity. Ices J Mar Sci 63(8):1418–1430

    Article  CAS  Google Scholar 

  • Clayton JR, Payne JR, Farlow JS, Sarwar C (2020) Oil spill dispersants: mechanisms of action and laboratory tests. CRC Press

    Book  Google Scholar 

  • DeLeo DM, Glazier A, Herrera S, Barkman A, Cordes EE (2021) Transcriptomic responses of deep-sea corals experimentally exposed to crude oil and dispersant. Front Mar Sci 8 https://doi.org/10.3389/fmars.2021.649909

  • DeLorenzo ME, Evans BN, Chung KW, Key PB, Fulton MH (2017) Effects of salinity on oil dispersant toxicity in the eastern mud snail, Ilyanassa obsoleta. Environ Sci Pollut Res 24(26):21476–21483

    Article  CAS  Google Scholar 

  • Durier G, Nadalini J-B, Saint-Louis R, Genard B, Comeau LA, Tremblay R (2021) Sensitivity to oil dispersants: effects on the valve movements of the blue mussel Mytilus edulis and the giant scallop Placopecten magellanicus, in sub-arctic conditions. Aquat Toxicol 234:105797

    Article  CAS  Google Scholar 

  • Epstein N, Bak RPM, Rinkevich J (2000) Toxicity of third generation dispersants and dispersed Egyptian crude oil on red sea coral larvae. Mar Pollut Bull 40(6):497–503. https://doi.org/10.1016/S0025-326x(99)00232-5

    Article  CAS  Google Scholar 

  • Fingas MF (1991) Dispersants: a review of effectiveness measures and laboratory physical studies,

  • Fingas M (2016) Oil spill science and technology. Gulf professional publishing

  • Gofstein TR, Perkins M, Field J, Leigh MB (2020) The interactive effects of crude oil and Corexit 9500 on Their biodegradation in Arctic seawater. Appl Environ Microb 86(21):ARTN e01194-20. https://doi.org/10.1128/AEM.01194-20

    Article  Google Scholar 

  • Gray JL, Kanagy LK, Furlong ET, Kanagy CJ, McCoy JW, Mason A, Lauenstein G (2014) Presence of the Corexit component dioctyl sodium sulfosuccinate in Gulf of Mexico waters after the 2010 Deepwater Horizon oil spill. Chemosphere 95:124–130. https://doi.org/10.1016/j.chemosphere.2013.08.049

    Article  CAS  Google Scholar 

  • Hayworth JS, Clement TP (2012) Provenance of Corexit-related chemical constituents found in nearshore and inland Gulf Coast waters. Mar Pollut Bull 64(10):2005–2014. https://doi.org/10.1016/j.marpolbul.2012.06.031

    Article  CAS  Google Scholar 

  • Hazen TC, Techtmann SM (2018) Oil biodegradation in deep marine basins. In: Steffan R (ed) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Springer International Publishing, Cham, pp 1–18

    Google Scholar 

  • Hazen TC, Prince RC, Mahmoudi N (2016) Marine oil biodegradation. Environ Sci Technol 50(5):2121–2129. https://doi.org/10.1021/acs.est.5b03333

    Article  CAS  Google Scholar 

  • Hemmer MJ, Barron MG, Greene RM (2011) Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (Lsc), and chemically dispersed lsc to two aquatic test species. Environ Toxicol Chem 30(10):2244–2252. https://doi.org/10.1002/etc.619

    Article  CAS  Google Scholar 

  • Hodson PV, Adams J, Brown RS (2019) Oil toxicity test methods must be improved. Environ Toxicol Chem 38(2):302–311

    Article  CAS  Google Scholar 

  • Hook SE, Osborn HL (2012) Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil. Aquat Toxicol 124:139–151. https://doi.org/10.1016/j.aquatox.2012.08.005

    Article  CAS  Google Scholar 

  • Juarez G, Fernandez V, Stocker R (2016) Biodegradation of crude oil dispersions by marine bacteria. In: APS Division of Fluid Dynamics Meeting Abstracts, R15. 008

  • King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci 7:377–401. https://doi.org/10.1146/annurev-marine-010814-015543

    Article  CAS  Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13(6):388–396. https://doi.org/10.1038/nrmicro3452

    Article  CAS  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. P Natl Acad Sci USA 112(48):14900–14905. https://doi.org/10.1073/pnas.1507380112

    Article  CAS  Google Scholar 

  • Lee K, Boufadel M, Chen B, Foght J, Hodson P, Swanson S, Venosa A (2016) High-priority research needs for oil spills in Canada: summary of a royal society expert panel report on the behaviour and environmental impacts of crude oil released into aqueous environments. In: Proc, 39th AMOP Technical Seminar on Environmental Contamination and Response, 966–991

  • Li XS, Xiong DQ, Ju ZL, Xiong YJ, Ding GH, Liao GX (2021) Phenotypic and transcriptomic consequences in zebrafish early-life stages following exposure to crude oil and chemical dispersant at sublethal concentrations. Sci Total Environ 763 ARTN 143053 https://doi.org/10.1016/j.scitotenv.2020.143053

  • Li M, Garrett C (1998) The relationship between oil droplet size and upper ocean turbulence. Mar Pollut Bull 36(12):961–970. https://doi.org/10.1016/S0025-326x(98)00096-4

    Article  CAS  Google Scholar 

  • Lubchenco J, McNutt MK, Dreyfus G, Murawski SA, Kennedy DM, Anastas PT, Chu S, Hunter T (2012) Science in support of the Deepwater Horizon response. Proc Natl Acad Sci U S A 109(50):20212–20221. https://doi.org/10.1073/pnas.1204729109

    Article  Google Scholar 

  • Macnaughton SJ, Swannell R, Daniel F, Bristow L (2003) Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci Technol Bull 8(2):179–186

    Article  CAS  Google Scholar 

  • Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 9:808. https://doi.org/10.3389/fmicb.2018.00808

    Article  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman HYN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou JH, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. Isme J 6(9):1715–1727. https://doi.org/10.1038/ismej.2012.59

    Article  CAS  Google Scholar 

  • McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in Arctic seawater at-1 degrees C. Plos One 9(1):ARTN e84297. https://doi.org/10.1371/journal.pone.0084297

    Article  CAS  Google Scholar 

  • McFarlin KM, Perkins MJ, Field JA, Leigh MB (2018) Biodegradation of crude oil and Corexit 9500 in Arctic seawater. Front Microbiol 9

  • Miller JI, Techtmann S, Fortney J, Mahmoudi N, Joyner D, Liu J, Olesen S, Alm E, Fernandez A, Gardinali P, GaraJayeva N, Askerov FS, Hazen TC (2019) Oil hydrocarbon degradation by Caspian Sea microbial communities. Front Microbiol 10:995. https://doi.org/10.3389/fmicb.2019.00995

    Article  Google Scholar 

  • Miller JI, Techtmann S, Joyner D, Mahmoudi N, Fortney J, Fordyce JA, GaraJayeva N, Askerov FS, Cravid C, Kuijper M, Pelz O, Hazen TC (2020) Microbial communities across global marine basins show important compositional similarities by depth. Mbio 11(4) https://doi.org/10.1128/mBio.01448-20

  • NASEM (National Academies of Sciences E, Medicine) (2020) The use of dispersants in marine oil spill response. National Academies Press

  • Negri AP, Luter HM, Fisher R, Brinkman DL, Irving P (2018) Comparative toxicity of five dispersants to coral larvae. Scientific Reports 8(1):1–11

  • Nguyen UT, Lincoln SA, Valladares Juarez AG, Schedler M, Macalady JL, Muller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One 13(7):e0199784. https://doi.org/10.1371/journal.pone.0199784

    Article  CAS  Google Scholar 

  • Overholt WA, Marks KP, Romero IC, Hollander DJ, Snell TW, Kostka JE (2016) Hydrocarbon-degrading bacteria exhibit a species-specific response to dispersed oil while moderating ecotoxicity. Appl Environ Microb 82(2):518–527. https://doi.org/10.1128/Aem.02379-15

    Article  CAS  Google Scholar 

  • Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49(11):6376–6384. https://doi.org/10.1021/acs.est.5b00961

    Article  CAS  Google Scholar 

  • Prince RC (2023) A half century of oil spill dispersant development, deployment and lingering controversy. Int Biodeter Biodegr 176:105510

    Article  CAS  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90(2):521–526. https://doi.org/10.1016/j.chemosphere.2012.08.020

    Article  CAS  Google Scholar 

  • Prince R, Kelley B, Butler J (2016) Three widely-available dispersants substantially increase the biodegradation of otherwise undispersed oil. J Marine Sci Res Dev 6:183

    Google Scholar 

  • Radniecki TS, Schneider MC, Semprini L (2013) The influence of Corexit 9500A and weathering on Alaska North Slope crude oil toxicity to the ammonia oxidizing bacterium. Nitrosomonas Europaea Mar Pollut Bull 68(1–2):64–70. https://doi.org/10.1016/j.marpolbul.2012.12.022

    Article  CAS  Google Scholar 

  • Rahsepar S, Langenhoff AAM, Smit MPJ, Van Eenennaam JS, Murk AJ, Rijnaarts HHM (2017) Oil biodegradation: interactions of artificial marine snow, clay particles, oil and Corexit. Mar Pollut Bull 125(1–2):186–191. https://doi.org/10.1016/j.marpolbul.2017.08.021

    Article  CAS  Google Scholar 

  • Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drabløs F, Brakstad OG (2018) Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull 129(1):370–378

    Article  CAS  Google Scholar 

  • Rughöft S, Vogel AL, Joye SB, Gutierrez T, Kleindienst S (2020) Starvation-dependent inhibition of the hydrocarbon degrader Marinobacter sp. TT1 by a chemical dispersant. J Mar Sci Eng 8(11):925

    Article  Google Scholar 

  • Rughoft S, Jehmlich N, Gutierrez T, Kleindienst S (2021) Comparative proteomics of Marinobacter sp. TT1 reveals Corexit impacts on hydrocarbon metabolism, chemotactic motility, and biofilm formation. Microorganisms 9(1):ARTN 3. https://doi.org/10.3390/microorganisms9010003

    Article  CAS  Google Scholar 

  • Schreiber L, Fortin N, Tremblay J, Wasserscheid J, Elias M, Mason J, Sanschagrin S, Cobanli S, King T, Lee K, Greer CW (2019) Potential for microbially mediated natural attenuation of diluted bitumen on the coast of British Columbia (Canada). Appl Environ Microbiol 85(10) https://doi.org/10.1128/AEM.00086-19

  • Shafir S, Van Rijn J, Rinkevich B (2007) Short and long term toxicity of crude oil and oil dispersants to two representative coral species. Environ Sci Technol 41(15):5571–5574

    Article  CAS  Google Scholar 

  • Staff NRC, Dispersants CoUOS, Board OS, Council NR, Earth Do, Studies L (2005) Oil spill dispersants: efficacy and effects. National Academy Press

  • Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE (2019) Dispersant enhances hydrocarbon degradation and alters the structure of metabolically active microbial communities in shallow seawater from the northeastern Gulf of Mexico. Front Microbiol 10:2387. https://doi.org/10.3389/fmicb.2019.02387

    Article  Google Scholar 

  • Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43(10):1345–1354

    Article  CAS  Google Scholar 

  • Techtmann SM, Fortney JL, Ayers K, Joyner DC, Linley T, Pfiffner SM, Hazen TC (2015) The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth. PLoS One 10(3):e0120605. https://doi.org/10.1371/journal.pone.0120605

    Article  CAS  Google Scholar 

  • Techtmann SM, Zhuang MB, Campo P, Holder E, Elk M, Hazen TC, Conmy R, Domingo JWS (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microb 83(10):UNSP e03462-16. https://doi.org/10.1128/AEM.03462-16

    Article  Google Scholar 

  • Toyota K, McNabb NA, Spyropoulos DD, Iguchi T, Kohno S (2017) Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna. J Appl Toxicol 37(2):201–206

    Article  CAS  Google Scholar 

  • Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, Lee K, Greer CW (2017) Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria. ISME J 11(12):2793–2808. https://doi.org/10.1038/ismej.2017.129

    Article  CAS  Google Scholar 

  • Urakawa H, Rajan S, Feeney ME, Sobecky PA, Mortazavi B (2019) Ecological response of nitrification to oil spills and its impact on the nitrogen cycle. Environ Microbiol 21(1):18–33. https://doi.org/10.1111/1462-2920.14391

    Article  CAS  Google Scholar 

  • Venosa AD, Holder EL (2007) Biodegradability of dispersed crude oil at two different temperatures. Mar Pollut Bull 54(5):545–553. https://doi.org/10.1016/j.marpolbul.2006.12.013

    Article  CAS  Google Scholar 

  • White HK, Lyons SL, Harrison SJ, Findley DM, Liu Y, Kujawinski EB (2014) Long-term persistence of dispersants following the Deepwater Horizon oil spill. Environ Sci Technol Lett 1(7):295–299

    Article  CAS  Google Scholar 

  • Zhang Y (2016) Biodegradability of dispersant and dispersed oil at 5 and 25 C. University of Cincinnati

  • Zobell CE (1934) Microbiological activities at low temperatures with particular reference to marine bacteria. Q Rev Biol 9(4):460–466

    Article  Google Scholar 

  • Zolfaghari-Baghbaderani A, Emtyazjoo M, Poursafa P, Mehrabian S, Bijani S, Farkhani D, Mirmoghtadaee P (2012) Effects of three types of oil dispersants on biodegradation of dispersed crude oil in water surrounding two Persian Gulf provinces. J Environ Public Health 2012

Download references

Funding

The US Environmental Protection Agency, through its Office of Research and Development, partially funded and participated in the research described herein.

Author information

Authors and Affiliations

Authors

Contributions

ST, JS, RC, and MB all wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Stephen M. Techtmann or Jorge Santo Domingo.

Ethics declarations

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Disclaimer

Any opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the Agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Techtmann, S.M., Santo Domingo, J., Conmy, R. et al. Impacts of dispersants on microbial communities and ecological systems. Appl Microbiol Biotechnol 107, 1095–1106 (2023). https://doi.org/10.1007/s00253-022-12332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12332-z

Keywords

Navigation