Skip to main content
Log in

Transcriptome analysis reveals the underlying mechanism of heptanal against Aspergillus flavus spore germination

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methods of controlling Aspergillus flavus contamination in agro-products have attracted attention because of its impact on global food security. We previously reported that the natural cereal volatile heptanal could effectively inhibit A. flavus growth and showed great potential as a bio-preservative agent. In this study, the minimum inhibitory concentration and minimum fungicide concentration of heptanal could change the surface morphology of A. flavus spores, causing them to wrinkle and collapse. Transcriptomic analysis showed that heptanal treatment significantly changed the expression of several genes involved in cell wall and plasma damage, reactive oxygen species (ROS) accumulation, energy metabolism, AMPK-activated protein kinase, biosynthesis of unsaturated fatty acids, RNA degradation, and DNA replication. Heptanal-induced early apoptosis of A. flavus spores was characterized by decreased mitochondrial membrane potential, increased intracellular ROS production, and DNA fragmentation. This study provides new insight into the inhibitory mechanism of heptanal against A. flavus and points to its potential application as a bio-preservative.

Key points

• Heptanal can effectively inhibit A. flavus growth in cereal grains.

• The transcriptional changes in A. flavus spores exposed to heptanal were analyzed.

• The antifungal mechanism of heptanal against A. flavus was elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150(7):2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71(1):333–374

    Article  CAS  PubMed  Google Scholar 

  • Boisnard S, Espagne E, Zickler D, Bourdais A, Riquet AL, Berteaux-Lecellier V (2009) Peroxisomal ABC transporters and beta-oxidation during the life cycle of the filamentous fungus Podospora anserina. Fungal Genet Biol 46(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Champagne EI (2008) Rice aroma and flavor: a literature review. Cereal Chem 85(4):447–456

    Article  Google Scholar 

  • Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16(7):3438–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijksterhuis J, Meijer M, van Doorn T, Houbraken J, Bruinenberg P (2019) The preservative propionic acid differentially affects survival of conidia and germ tubes of feed spoilage fungi. Int J Food Microbiol 306:108258

    Article  CAS  PubMed  Google Scholar 

  • Ebenhöh O, Heinrich R (2001) Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. B Math Biol 63(1):21–55

    Article  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr S (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360(6390):739–742

    Article  CAS  PubMed  Google Scholar 

  • De Flaviis R, Sacchetti G, Mastrocola D (2021) Wheat classification according to its origin by an implemented volatile organic compounds analysis. Food Chem 341

  • Fleurat-Lessard F (2017) Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins—an update. J Stored Prod Res 71:22–40

    Article  Google Scholar 

  • Grahame Hardie D (2014) AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276(6):543–559

    Article  CAS  PubMed  Google Scholar 

  • Hall R, Oser B (1965) III GRAS substances: recent progress in the consideration of flavoring ingredients under the food additives amendment. Food Technol 19:151–156

    Google Scholar 

  • Hallett JEH, Luo X, Capaldi AP (2014) State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics 198(2):773–786

    Article  Google Scholar 

  • Hammerbacher A, Coutinho TA, Gershenzon J (2019) Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ 42(10):2827–2843

    Article  CAS  PubMed  Google Scholar 

  • Hassanzad Azar H, Taami B, Aminzare M, Daneshamooz S (2018) Bunium persicum (Boiss.) B. Fedtsch: An overview on phytochemistry, therapeutic uses and its application in the food industry. J Appl Pharm Sci 8(10):150–158

    Article  CAS  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. P Natl Acad Sci USA 104(13):5467–5472

    Article  CAS  Google Scholar 

  • Hu Z, Yuan K, Zhou Q, Lu C, Du L, Liu F (2021) Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control 123:107703

    Article  CAS  Google Scholar 

  • Ismail M, El-Maali N, Omran G, Nasser N (2016) Biodiversity of mycobiota in peanut seeds, corn and wheat grains with special reference to their aflatoxigenic ability. 5 (4), 314–319. https://doi.org/10.15414/jmbfs.2016.5.4.314-319.

  • Jayas DS (2012) Storing grains for food security and sustainability. Agr Res 1(1):21–24

    Article  CAS  Google Scholar 

  • Ji T, Kang M, Baik B (2017) Volatile organic compounds of whole-grain soft winter wheat. Cereal Chem 94(3):594–601

    Article  CAS  Google Scholar 

  • Kametaka S, Matsuura A, Wada Y, Ohsumi Y (1996) Structural and functional analyses of APG5 a gene involved in autophagy in yeast. Gene 178(1–2):139–143

    Article  CAS  PubMed  Google Scholar 

  • Krishnan K, Ren Z, Losada L, Nierman WC, Lu L, Askew DS (2014) Polysome profiling reveals broad translatome remodeling during endoplasmic reticulum (ER) stress in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 15(1):1–14

    Article  Google Scholar 

  • Kunz H-H, Scharnewski M, Feussner K, Feussner I, Flügge U-I, Fulda M, Gierth M (2009) The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21(9):2733–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Sigmon VK, Babcock SA, Ren J (2007) Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 80(11):1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Njateng GSS, He W, Zhang H, Gu J, Chen S, Du Z (2013) Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi. Chem & Biodivers 10(11):2032–2041

    Article  CAS  Google Scholar 

  • Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H (2017) Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem 234:62–67

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shao X, Wei Y, Dai K, Xu J, Xu F, Wang H (2020) Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Appl Microbiol Biot 104(5):2163–2178

    Article  CAS  Google Scholar 

  • Li S, Zhang S, Zhai H, Lv Y, Hu Y, Cai J (2021a) Hexanal induces early apoptosis of Aspergillus flavus conidia by disrupting mitochondrial function and expression of key genes. Appl Microbiol Biot 105(18):6871–6886

    Article  CAS  Google Scholar 

  • Li X, Ren Y, Jing J, Jiang Y, Yang Q, Luo S, Xing F (2021) The inhibitory mechanism of methyl jasmonate on Aspergillus flavus growth and aflatoxin biosynthesis and two novel transcription factors are involved in this action. Food Res Int 140:110051

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang S, Lv Y, Zhai H, Hu Y, Cai J (2022) Heptanal inhibits the growth of Aspergillus flavus through disturbance of plasma membrane integrity, mitochondrial function and antioxidant enzyme activity. Lwt 154:112655

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loeffler M, Beiser S, Suriyarak S, Gibis M, Weiss J (2014) Antimicrobial efficacy of emulsified essential oil components against weak acid–adapted spoilage yeasts in clear and cloudy apple juice. J Food Protect 77(8):1325–1335

    Article  Google Scholar 

  • Maneesri J, Azuma M, Sakai Y, Igarashi K, Matsumoto T, Fukuda H, Kondo A, Ooshima H (2005) Deletion of MCD4 involved in glycosyl-phosphatidylinositol (GPI) anchor synthesis leads to an increase in β-1, 6-glucan level and a decrease in GPI-anchored protein and mannan levels in the cell wall of Saccharomyces cerevisiae. J Biosci Bioeng 99(4):354–360

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh-Aghdash H, Sohrabi Y, Mohammadi A, Shanehbandi D, Dehghan P, Ezzati NDJ (2018) Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chem 257:211–215

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Kumar S, Kotwaliwale N, Singh KK (2017) Critical factors responsible for fungi growth in stored food grains and non-chemical approaches for their control. Ind Crop Prod 108:162–182

    Article  Google Scholar 

  • Narayan RS (2007) VanNieuwenhze M S (2007) Synthesis of substrates and biochemical probes for study of the peptidoglycan biosynthetic pathway. Eur J Org Chem 9:1399

    Article  Google Scholar 

  • Nayak V, Zhao K, Wyce A, Schwartz MF, Lo W, Berger SL, Marmorstein R (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14(3):477–485

    Article  CAS  PubMed  Google Scholar 

  • Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23(16):2797–2808

    Article  CAS  PubMed  Google Scholar 

  • Nose H, Fushimi H, Seki A, Sasaki T, Watabe H, Hoshiko S (2002) PF1163A, a novel antifungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J Antibiot 55(11):969–974

    Article  CAS  Google Scholar 

  • Paksoy MY, Diraz E, Diğrak M, Tutar E, Karaman Ş (2016) Essential oil composition and antimicrobial activity of two endemic Kundmannia SCOP. species from Turkey. Ind Crop Prod 79:39–46

    Article  CAS  Google Scholar 

  • Raithel S, Johnson L, Galliart M, Brown S, Shelton J, Herndon N, Bello NM (2016) Inferential considerations for low-count RNA-seq transcripts: a case study on the dominant prairie grass Andropogon gerardii. BMC Genomics 17:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayaslan A, Chung O, Seib P, Seitz L (2000) Volatile compounds in five starches. Cereal Chem 77(2):248–253

    Article  CAS  Google Scholar 

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green D (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275(10):7337–7342

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Dhamgaye S, Singh A, Prasad R (2012) Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Front Mol Biosci 4:1195

    Article  Google Scholar 

  • Smilanick J, Mansour M, Gabler F, Sorenson D (2008) Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol Technol 47(2):226–238

    Article  CAS  Google Scholar 

  • Thomson E, Rappsilber J, Tollervey D (2007) Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA 13(12):2165–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson E, Ferreira-Cerca S, Hurt E (2013) Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126(21):4815–4821

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Gan Y, Pan C, Zhang M, Wang X, Tang X, Peng X (2018) Nerol-induced apoptosis associated with the generation of ROS and Ca2+ overload in saprotrophic fungus Aspergillus flavus. Appl Microbiol Biot 102(15):6659–6672

    Article  CAS  Google Scholar 

  • Tian P, Lv Y, Wei S, Zhang S, Li N, Hu Y (2021) Antifungal properties of recombinant Puroindoline B protein against aflatoxigenic Aspergillus flavus. Lwt 144:111130

    Article  CAS  Google Scholar 

  • Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y (2012). The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One 7 (1): e30147.

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva-Paz M, Cotán D, Garrido-Maraver J, Oropesa-Ávila M, de la Mata M, Delgado-Pavón A, de Lavera I, Alcocer-Gómez E, Álvarez-Córdoba M, Sánchez-Alcázar J A (2016) AMPK regulation of cell growth, apoptosis, autophagy, and bioenergetics. 45–71. https://doi.org/10.1007/978-3-319-43589-3_3

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Feng K, Yang H, Zhang Z, Yuan Y, Yue T (2018) Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front Microbiol 9:597

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Shao X, Wei Y, Jiang S, Xu F, Wang H (2020) Quantitative proteomics reveals that tea tree oil effects Botrytis cinerea mitochondria function. Pestic Biochem Physiol 164:156–164

    Article  CAS  PubMed  Google Scholar 

  • Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T (1998) The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 17(4):877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ji J, Yan X (2012a) Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci 52(5):373–381

    Article  CAS  Google Scholar 

  • Xu T, Tripathi S, Feng Q, Lorenz M, Wright M, Jacob M, Mask M, Baerson S, Li X, Clark A (2012b) A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis. Antimicrob Agents Ch 56(6):2894–2907

    Article  CAS  Google Scholar 

  • Xu D, Wei M, Peng S, Mo H, Huang L, Yao L, Hu L (2021) Cuminaldehyde in cumin essential oils prevents the growth and aflatoxin B1 biosynthesis of Aspergillus flavus in peanuts. Food Control 125:107985

    Article  CAS  Google Scholar 

  • Xu Y, Wei J, Wei Y, Han P, Dai K, Zou X, Jiang S, Xu F, Wang H, Sun J, Shao X (2021) Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola. Postharvest Biol Tec 175:111474

    Article  CAS  Google Scholar 

  • Yu G, Wang L, Han Y, He Q (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhai H, Hu Y, Wang L, Yu G, Huang S, Cai J (2014) A rapid detection method for microbial spoilage of agro-products based on catalase activity. Food Control 42:220–224

    Article  CAS  Google Scholar 

  • Zhang S, Zheng M, Zhai H, Lyu Y, Hu Y, Cai J (2021b) Effects of hexanal fumigation on fungal spoilage and grain quality of stored wheat. Grain & Oil Sci Technol 4(1):10–17

    Article  CAS  Google Scholar 

  • Zhang W, Lv Y, Lv A, Wei S, Zhang S, Li C, Hu Y (2021c) Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage. J Sci Food Agr 101(2):486–496

    Article  CAS  Google Scholar 

  • Zhang S, Qin Y, Li S, Lv Y, Zhai H, Hu Y, Cai J (2021) Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses. Appl Microbiol Biot 1–18.

Download references

Funding

This work was supported by the National Key Research and Development Plan of China (grant number 2019YFC1605303-04), the National Natural Science Foundation of China (grant number 31772023), the Scientific and Technological Research Project of Henan Province (grant number 212102110193), the Natural Scientific Research Innovation Foundation of Henan University of Technology (grant number 2020ZKCJ01), the Cultivation Programme for Young Backbone Teachers in Henan University of Technology, and the Scientific Research Foundation of Henan University of Technology (grant number 2018RCJH14).

Author information

Authors and Affiliations

Authors

Contributions

SFL: experimentation, writing—original draft, investigation. SBZ: supervision, data curation, writing—review and editing, resources. YYL: software, visualization. HCZ: software, validation. YSH: visualization, conceptualization. JPC: methodology, conceptualization.

Corresponding authors

Correspondence to Shuai-Bing Zhang or Jing-Ping Cai.

Ethics declarations

Ethics approval

This article does not contain studies conducted on human participants or animals by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SF., Zhang, SB., Lv, YY. et al. Transcriptome analysis reveals the underlying mechanism of heptanal against Aspergillus flavus spore germination. Appl Microbiol Biotechnol 106, 1241–1255 (2022). https://doi.org/10.1007/s00253-022-11783-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11783-8

Keywords

Navigation