Skip to main content
Log in

Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vanillin is one of the most commonly used natural-occurring flavors in the world. This study successfully constructed an efficient whole-cell catalytic system for vanillin biosynthesis from ferulic acid by regulating feruloyl-CoA synthetase (FCS) and enoyl-CoA hydratase (ECH). First, we constructed an efficient cell-free catalytic system with FCS-Str (fcs from Streptomyces sp. V-1) and ECH-Str (ech from Streptomyces sp. V-1) combination at 1:1. The efficient cell-free catalytic system provided necessary strategies for optimizing the whole-cell catalytic system. Then, we constructed the recombinant Escherichia coli by heterologously expressing the fcs-Str and ech-Str combination. Moreover, E. coli JM109 was a better recombinant Escherichia coli than E. coli BL21 with higher vanillin production. Finally, we first adjusted the ratio of FCS and ECH in E. coli JM109 to 1:1 using two copies of fcs-Str. For higher vanillin production, we further optimized the induction conditions of E. coli JM109 to increase the amount of FCS and ECH. The optimized E. coli JM109-FE-F constructed in this study has the highest vanillin synthesis rate of converting 20 mM ferulic acid to 15 mM vanillin in 6 h among all of the E. coli catalytic systems. Our study made a significant contribution to the construction of the vanillin biosynthesis system and provided a valuable strategy for increasing vanillin production.

Key points

The efficient cell-free vanillin biosynthesis system was constructed by FCS-Str and ECH-Str combination at 1:1.

Escherichia coli JM109 was determined as a better recombinant Escherichia coli than E. coli BL21 with higher vanillin production.

Escherichia coli JM109-FE-F with two copies of fcs-Str and one copy of ech-Str has the highest catalytic efficiency for vanillin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets obtained for this study are included in the manuscript/supplementary material.

References

  • Arya SS, Rookes JE, Cahill DM, Lenka SK (2021) Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med 21:1–17

    Article  CAS  Google Scholar 

  • Banerjee G, Chattopadhyay P (2018) Vanillin biotechnology: the perspectives and future. J Sci Food Agr 99:499–506

    Article  Google Scholar 

  • Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty D, Gupta G, Kaur B (2016) Metabolic engineering of E.coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expres Purif 128:123–133

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Banerjee G, Sen SK (2018) Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. J Clean Prod 182:272–279

    Article  CAS  Google Scholar 

  • Davis MM (2003) The problem of plain vanilla peptides. Nat Immunol 4:649–650

    Article  PubMed  CAS  Google Scholar 

  • Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316

    Article  PubMed  Google Scholar 

  • Fleige C, Meyer F, Steinbuchel A (2016) Metabolic engineering of the actinomycete Amycolatopsis sp. Strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82:3410–3419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuya T, Miura M, Kuroiwa M, Kino K (2015) High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process. New Biotechnol 32:335–339

    Article  CAS  Google Scholar 

  • Gallage NJ, Moller BL (2015) Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8:40–57

    Article  PubMed  CAS  Google Scholar 

  • Gallage NJ, Hansen EH, Kannangara R, Olsen CE, Motawia MS, Jorgensen K, Holme I, Hebelstrup K, Grisoni M, Moller BL (2014) Vanillin formation from ferulic acid in vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037

    Article  PubMed  CAS  Google Scholar 

  • Gallage NJ, Jorgensen K, Janfelt C, Nielsen AJZ, Naake T, Dunski E, Dalsten L, Grisoni M, Moller BL (2018) The intracellular localization of the vanillin biosynthetic machinery in pods of vanilla planifolia. Plant Cell Physiol 59:304–318

    Article  PubMed  CAS  Google Scholar 

  • Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790

    Article  PubMed  CAS  Google Scholar 

  • Tamara K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–26

    Google Scholar 

  • Khoyratty S, Kodja H, Verpoorte R (2018) Vanilla flavor production methods: a review. Ind Crop Prod 125:433–442

    Article  CAS  Google Scholar 

  • Kunjapur AM, Prather KLJ (2019) Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli. ACS Synth Biol 8:1958–1967

    Article  PubMed  CAS  Google Scholar 

  • Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102:200–208

    Article  PubMed  CAS  Google Scholar 

  • Li L, Liao Y, Luo Y, Zhang G, Liao X, Zhang W, Zheng S, Han S, Lin Y, Liang S (2019) Improved efficiency of the desulfurization of oil sulfur compounds in Escherichia coli using a combination of desensitization engineering and DszC overexpression. ACS Synth Biol 8:1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Luziatelli F, Brunetti L, Ficca AG, Ruzzi M (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 7:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, Razzazi-Fazeli E, Striedner G (2013) A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 8:e70516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martu GA, Clinoiu LF, Vodnar DC (2021) Bio-vanillin: towards a sustainable industrial production. Trends Food Sci Tech 109:579–592

    Article  Google Scholar 

  • Meyer F, Pupkes H, Steinbuchel A (2017) Development of an improved system for the generation of knockout mutants of Amycolatopsis sp. strain ATCC 39116. Appl Environ Microbiol 83:e02660

    Article  PubMed  PubMed Central  Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biot 51:456–461

    Article  CAS  Google Scholar 

  • Ni J, Gao YY, Tao F, Liu HY, Xu P (2018) Temperature-directed biocatalysis for the sustainable production of aromatic aldehydes or alcohols. Angewandte Chemie-International Edition 57:1214–1217

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Priefert H, Rabenhorst J, Steinbuchel A (1999a) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52:820–828

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Priefert H, Steinbuchel A (1999b) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65:4837–4847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pattrick CA, Webb JP, Green J, Chaudhuri RR, Collins MO, Kelly DJ (2019) Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli. mSystems 4:e00163-00119

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbuchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61:528–535

    Article  PubMed  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biot 56:296–314

    Article  CAS  Google Scholar 

  • Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G (2017a) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biot 101:5059–5070

    Article  CAS  Google Scholar 

  • Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G (2017b) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101:5059–5070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwab W, Lange BM, Wüst M (2018) Vanilla: the most popular flavour. Biotechnology of Natural Products 1:3–24

    Google Scholar 

  • Shan Q, Ping SA, Ying L, Zhi C, Yuan HC, Hong MY (2019) Elevated β-carotene synthesis by the engineered Rhodobactersphaeroides with enhanced CrtY expression. J Agr Food Chem 67:9560–9568

    Article  Google Scholar 

  • Sudhir K, Glen S, Michael L, Christina K, Koichiro T (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  Google Scholar 

  • Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P (2013) Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS One 8:e67339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao J, He Y, Su N, Bharath SR, Tao Y, Jin JM, Chen W, Song H, Tang SY (2020) Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat Commun 11:1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeoh JW, Jayaraman SS, Tan SG, Jayaraman P, Holowko MB, Zhang J, Kang CW, Leo HL, Poh CL (2021) A model-driven approach towards rational microbial bioprocess optimization. Biotechnol Bioeng 118:305–318

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF (2012) Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol 13:37

    Article  Google Scholar 

  • Yoon SH, Lee EG, Das A, Lee SH, Kim SW (2007) Enhanced vanillin production from recombinant E.coli using ntg mutagenesis and adsorbent resin. Biotechnol Progr 23:1143–1148

    Google Scholar 

  • Yoon SH, Li C, Kim JE, Lee SH, Yoon JY, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW (2005) Production of vanillin by metabolically engineered Escherichia coli. Biotechnol Lett 27:1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Shi ZZ, Li CM (2015) Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification. J Colloid Interface Sci 453:151–158

    Article  PubMed  CAS  Google Scholar 

  • Zhao FL, Zhang C, Zhang C, Tang Y, Ye BC (2016) A genetically encoded biosensor for in vitro and in vivo detection of NADP. Biosens Bioelectron 77:901–906

    Article  PubMed  CAS  Google Scholar 

  • Zhong XY, Lin JM, Zhou JH, Xu W, Hong ZF (2015) Anti-proliferative effects of qianliening capsules on prostatic hyperplasia in vitro and in vivo. Mol Med Rep 12:1699–1708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was supported by the 2020 Team Innovation Project from the Fundamental Scientific Research Special Capital Fund of the National Universities, China (100034/1301030160) and the Natural Science Foundation of China (NSFC) Project (grant number 32172145). Fundamental Research Funds for Central Universities of the Central South University,100034/1301030160,Yong Hong Meng,Natural Science Foundation of China (NSFC) Project,32172145,Yong Hong Meng

Author information

Authors and Affiliations

Authors

Contributions

QC, DX, SQ, and YM designed the experiments. QC performed the experiments. QC and YM were responsible for data processing and analysis. QC, YM, and CH wrote and revised manuscripts.

Corresponding author

Correspondence to Yong Hong Meng.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q.H., Xie, D.T., Qiang, S. et al. Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes. Appl Microbiol Biotechnol 106, 247–259 (2022). https://doi.org/10.1007/s00253-021-11709-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11709-w

Keywords

Navigation