Skip to main content
Log in

Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Promoters play an important role in regulating gene expression, and construction of microbial cell factories requires multiple promoters for balancing the metabolic pathways. However, there are only a limited number of characterized promoters for gene expression in the methylotrophic yeast Ogataea polymorpha, which hampers the extensive harnessing of this important yeast toward a cell factory. Here we characterized the promoters of methanol utilization pathway, precursor supply pathway, and reactive oxygen species (ROS) defense system, by using a green fluorescence protein variant (GFPUV) as a quantification signal. Finally, the characterized promoters were used for tuning a fatty alcohol biosynthetic pathway in O. polymorpha and realized fatty alcohol production from methanol. This promoter box should be helpful for gene expression and pathway optimization in the methylotrophic yeast O. polymorpha.

Key Points

22 promoters related to methanol metabolism were characterized in O. polymorpha.

Promoter truncation resulted shorter and compact promoters.

Promoters with various strengths were used for regulating a fatty alcohol biosynthesis from methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data that supports the finding of this study are available from the corresponding author on reasonable request.

References

  • Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2009) Peroxisomes are oxidative organelles. Antioxid Redox Sign 13(4):525–537

    Article  CAS  Google Scholar 

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58

    Article  CAS  Google Scholar 

  • Bredell H, Smith JJ, Prins WA, Görgens JF, van Zyl WH (2016) Expression of rotavirus VP6 protein: a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Res 16(2): fow001

  • Brophy JAN, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11(5):508–520

    Article  CAS  Google Scholar 

  • Cai P, Duan XP, Wu XY, Gao LH, Ye M, Zhou YJ (2021) Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia Pastoris. Nucleic Acids Res 49(13):7791–7805

    Article  CAS  Google Scholar 

  • Cai P, Gao J, Zhou YJ (2019) CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb Cell Fact 18:63

    Article  Google Scholar 

  • Cámara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P (2017) Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 7:44302

    Article  Google Scholar 

  • Chen Z, Wang Z, He X, Guo X, Li W, Zhang B (2008) Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Appl Microbiol Biotechnol 79:545

    Article  CAS  Google Scholar 

  • Duan X, Gao J, Zhou YJ (2018) Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol. Chinese Chem Lett 29(05):681–686

    Article  CAS  Google Scholar 

  • Gao J, Gao N, Zhai X, Zhou YJ (2021) Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 24(3): 102168

  • Gao J, Zhou YJ (2020) Advances in methanol bio-transformation. Synth Biol J 1(2):158–173

    Google Scholar 

  • Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54(6):741–750

    Article  CAS  Google Scholar 

  • Grabe N (2002) AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2:S1–S15

    PubMed  Google Scholar 

  • Heo JH, Hong WK, Cho EY, Kim MW, Kim JY, Kim CH, Rhee SK, Kang HA (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res 4(2):175–184

    Article  CAS  Google Scholar 

  • Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2010) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104(5):911–919

    Article  CAS  Google Scholar 

  • Krasovska OS, Stasyk OG, Nahorny VO, Stasyk OV, Sibirny AA (2010) Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotechnol Bioeng 97(4):858–870

    Article  CAS  Google Scholar 

  • Kurylenko OO, Ruchala J, Hryniv OB, Abbas CA, Dmytruk KV, Sibirny AA (2014) Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microb Cell Fact 13:122

    Article  CAS  Google Scholar 

  • Levine DW, Cooney CL (1973) Isolation and characterization of a thermotolerant methanol-utilizing yeast. Appl Microbiol 26(6):982–990

    Article  CAS  Google Scholar 

  • Li P, Sun H, Chen Z, Li Y, Zhu T (2015) Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb Cell Fact 14:22

    Article  CAS  Google Scholar 

  • Li Y, Song H, Li J, Wang Y, Yan X, Zhao B, Zhang X, Wang S, Chen L, Qiu B (2011) Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol 151(4):343–349

    Article  CAS  Google Scholar 

  • Manfro-Netto JHC, Gomes AMV, Parachin NS (2019) Advances in using Hansenula polymorpha as chassis for recombinant protein production. Front Bioeng Biotech 7:94

    Article  Google Scholar 

  • Nielsen AA, Segall-Shapiro TH, Voigt CA (2013) Advances in genetic circuit design: Novel biochemistries, deep part mining, and precision gene expression. Curr Opin Chem Biol 17(6):878–892

    Article  CAS  Google Scholar 

  • Numamoto M, Maekawa H, Kaneko Y (2017) Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng 124(5):487–492

    Article  CAS  Google Scholar 

  • Patra P, Das M, Kundu P, Ghosh A (2021) Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 47: 107695

  • Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14:837

    Article  CAS  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26(1):51–56

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1(11):514–525

    Article  CAS  Google Scholar 

  • Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA (2011) Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11:8

    Article  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517

    Article  CAS  Google Scholar 

  • Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5(2):172–186

    Article  CAS  Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242

    Article  CAS  Google Scholar 

  • Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136

    Article  CAS  Google Scholar 

  • Wang L, Deng A, Zhang Y, Liu S, Liang Y, Bai H, Cui D, Qiu Q, Shang X, Yang Z, He X, Wen T (2018) Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts. Biotechnol Biofuels 11(1):277

    Article  CAS  Google Scholar 

  • Wetzel D, Müller JM, Flaschel E, Friehs K, Risse JM (2016) Fed-batch production and secretion of streptavidin by Hansenula polymorpha: evaluation of genetic factors and bioprocess development. J Biotechnol 225:3–9

    Article  CAS  Google Scholar 

  • Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry-US 50(48):10550–10558

    Article  CAS  Google Scholar 

  • Xue Y, Kong C, Shen W, Bai C, Ren Y, Zhou X, Zhang Y, Cai M (2016) Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway. J Biotechnol 242:64–72

    Article  CAS  Google Scholar 

  • Yang S, Cao X, Yu W, Li SY, Zhou YJ (2020) Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Appl Microbial Biotechnol 104:3037–3047

    Article  CAS  Google Scholar 

  • Yu W, Gao J, Zhai X, Zhou YJ (2021) Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha. Synth Syst Biotechnol 6(2):63–68

    Article  CAS  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  Google Scholar 

  • Zhou YJ, Kerkhoven E, Nielsen J (2018) Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy 3:925–935

  • Zutphen TV, Baerends RJ, Susanna KA, Jong AD, Kuipers OP, Veenhuis M, Klei IJVD (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11(1):1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the helpful discussions with Wei Yu, Peng Cai, Yunxia Li, Reibing Chen, and Chunxiao Yan.

Funding

This study was funded by National Natural Science Foundation of China (21922812, 21808216 and M-0246), LiaoNing Revitalization Talents Program (XLYC1807191), DMTO research grant (grant no. DICP DMTO201701) and DICP innovation grant (grant no. DICP I201920) from Dalian Institute of Chemicals Physics, CAS.

Author information

Authors and Affiliations

Authors

Contributions

XXZ, LLJ, and JQG designed the research; XXZ and LLJ performed experiments and data analysis; YJZ conceived and supervised the project; XXZ and YJZ wrote the paper; all authors proofed the manuscript.

Corresponding author

Correspondence to Yongjin J. Zhou.

Ethics declarations

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Consent for publication

All listed authors have approved the manuscript before submission, including the names and order of authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 736 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Ji, L., Gao, J. et al. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Appl Microbiol Biotechnol 105, 8761–8769 (2021). https://doi.org/10.1007/s00253-021-11665-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11665-5

Keywords

Navigation