Skip to main content
Log in

A coupled enzymatic reaction of tyrosinase and glucose dehydrogenase for the production of hydroxytyrosol

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydroxytyrosol (HT) is a diphenolic compound prevalent mainly in olives with pronounced antioxidant activity and proven benefits for human health. Current production limitations have motivated studies concerning the hydroxylation of tyrosol to HT with tyrosinase; however, accumulation of the diphenol is restricted due to its rapid subsequent oxidation to 3,4-quinone-phenylethanol. In this study, a continuous two-enzyme reaction system of sol-gel-immobilized tyrosinase and glucose dehydrogenase (GDH) was developed for the synthesis of HT. Purified tyrosinase from Bacillus megaterium (TyrBm) and E. coli cell extract expressing GDH from B. megaterium were encapsulated in a sol-gel matrix based on triethoxysilane precursors. While tyrosinase oxidized tyrosol to 3,4-quinone-phenylethanol, GDH catalyzed the simultaneous reduction of the cofactor NAD+ to NADH, which was the reducing agent enabling the accumulation of HT. Using 50 mM tyrosol, the immobilized system under optimized conditions, enabled a final HT yield of 7.68 g/L with productivity of 2.30 mg HT/mg TyrBm beads. Furthermore, the immobilized bi-enzyme system showed the feasibility for HT production from 1 mM tyrosol using a 0.5-L bioreactor as well as stable activity over 8 repeated cycles. The production of other diphenols with commercial importance such as l-dopa (3,4-dihydroxyphenylalanine) or piceatannol may be synthesized with this efficient approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achmon Y, Fishman A (2015) The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities. Appl Microbiol Biotechnol 99(3):1119–1130

    CAS  PubMed  Google Scholar 

  • Allouche N, Sayadi S (2005) Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain. J Agric Food Chem 53(16):6525–6530

    CAS  PubMed  Google Scholar 

  • Allouche N, Damak M, Ellouz R, Sayadi S (2004) Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 70(4):2105–2109

  • Ates S, Cortenlioglu E, Bayraktar E, Mehmetoglu U (2007) Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme Microb Technol 40(4):683–687

    CAS  Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6(10):1605–1614

    CAS  Google Scholar 

  • Bernini R, Merendino N, Romani A, Velotti F (2013) Naturally occurring hydroxytyrosol: synthesis and anticancer potential. Curr Med Chem 20(5):655–670

    CAS  PubMed  Google Scholar 

  • Bouallagui Z, Sayadi S (2006) Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells. J Agric Food Chem 54(26):9906–9911

  • Bouallagui Z, Sayadi S (2018) Bioconversion of p-tyrosol into hydroxytyrosol under bench-scale fermentation. Biomed Res Int 2018(7390751):1–5

  • Britton J, Davis R, O’Connor KE (2019) Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 103(15):5957–5974

    CAS  PubMed  Google Scholar 

  • Brooks SJ, Doyle EM, O’Connor KE (2006) Tyrosol to hydroxytyrosol biotransformation by immobilised cell extracts of Pseudomonas putida F6. Enzyme Microb Technol 39(2):191–196

  • Brouk M, Fishman A (2012) Improving process conditions of hydroxytyrosol synthesis by toluene-4-monooxygenase. J Mol Catal B Enzym 84:121–127

    CAS  Google Scholar 

  • Choo HJ, Kim EJ, Kim SY, Lee Y, Kim B-G, Ahn J-H (2018) Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl Biol Chem 61(3):295–301

    CAS  Google Scholar 

  • Chung D, Kim SY, Ahn J-H (2017) Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci Rep 7(1):2578

  • Cieńska M, Labus K, Lewańczuk M, Koźlecki T, Liesiene J, Bryjak J (2016) Effective L-tyrosine hydroxylation by native and immobilized tyrosinase. PLoS One 11(10):e0164213

    PubMed  PubMed Central  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29(1):3–14

    CAS  PubMed  Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31(7):907–931

    Google Scholar 

  • EFSA (2011) EFSA panel on dietetic products, nutrition and allergies. Scientific opinion on the substantiation of health claims related to polyphenols in olive. EFSA J 9(4):2033–2058

    Google Scholar 

  • Espín JC, Soler-Rivas C, Cantos E, Tomás-Barberán FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49(3):1187–1193

    PubMed  Google Scholar 

  • Faccio G, Kruus K, Saloheimo M, Thöny-Meyer L (2012) Bacterial tyrosinases and their applications. Process Biochem 47(12):1749–1760

    CAS  Google Scholar 

  • Gihaz S, Weiser D, Dror A, Sátorhelyi P, Jerabek-Willemsen M, Poppe L, Fishman A (2016) Creating an efficient methanol-stable biocatalyst by protein and immobilization engineering steps towards efficient biosynthesis of biodiesel. ChemSusChem 9(22):3161–3170

    CAS  PubMed  Google Scholar 

  • Goldfeder M, Egozy M, Shuster Ben-Yosef V, Adir N, Fishman A (2013) Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol 97(5):1953–1961

    CAS  PubMed  Google Scholar 

  • Halaouli S, Asther M, Kruus K, Guo L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 98(2):332–343

  • Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100(2):219–232

    CAS  PubMed  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468

    CAS  PubMed  Google Scholar 

  • Horvat M, Fritsche S, Kourist R, Winkler M (2019) Characterization of type IV carboxylate reductases (CARs) for whole cell-mediated preparation of 3-hydroxytyrosol. ChemCatChem 2019(11):1–12

    Google Scholar 

  • Hoyoux A, Blaise V, Collins T, D’Amico S, Gratia E, Huston AL, Marx J-C, Sonan G, Zeng Y, Feller G (2004) Extreme catalysts from low-temperature environments. J Biosci Bioeng 98(5):317–330

    CAS  PubMed  Google Scholar 

  • Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461(1):1–36

    CAS  Google Scholar 

  • Labus K, Turek A, Liesiene J, Bryjak J (2011) Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochem Eng J 56(3):232–240

  • Lee N, Lee S-H, Baek K, Kim B-G (2015) Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol. Appl Microbiol Biotechnol 99(19):7915–7924

  • Li X, Chen Z, Wu Y, Yan Y, Sun X, Yuan Q (2018) Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol. ACS Synth Biol 7(2):647–654

    CAS  PubMed  Google Scholar 

  • Li C, Jia P, Bai Y, Fan T-P, Zheng X, Cai Y (2019) Efficient synthesis of hydroxytyrosol from L-dopa using engineered Escherichia coli whole cells. J Agric Food Chem 67(24):6867–6873

  • Liebgott P-P, Labat M, Casalot L, Amouric A, Lorquin J (2007) Bioconversion of tyrosol into hydroxytyrosol and 3, 4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24. FEMS Microbiol Lett 276(1):26–33

  • Liu D-M, Chen J, Shi Y-P (2018) Advances on methods and easy separated support materials for enzymes immobilization. TrAc Trend Anal Chem 102:332–342

    CAS  Google Scholar 

  • Marín-Zamora ME, Rojas-Melgarejo F, García-Cánovas F, García-Ruiz PA (2009) Production of o-diphenols by immobilized mushroom tyrosinase. J Biotechnol 139(2):163–168

  • Min K, Park K, Park D-H, Yoo YJ (2015) Overview on the biotechnological production of L-DOPA. Appl Microbiol Biotechnol 99(2):575–584

    CAS  PubMed  Google Scholar 

  • Nolan LC, O’Connor KE (2007) Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Biotechnol Lett 29(7):1045–1050

  • O’Connor K, Molloy S, Davis R, Shaw W (2017) A method for the enzymatic conversion of a phenol substrate into a corresponding catechol product. US 2017/0355969 A1

  • Orenes-Piñero E, García-Carmona F, Sánchez-Ferrer Á (2013) A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius. Food Chem 139(1–4):377–383

  • Petrovičová T, Markošová K, Hegyi Z, Smonou I, Rosenberg M, Rebroš M (2018) Co-immobilization of ketoreductase and glucose dehydrogenase. Catalysts 8(4):168

    Google Scholar 

  • Pierre A (2004) The sol-gel encapsulation of enzymes. Biocatal Biotransform 22(3):145–170

    CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49(5):527–534

    CAS  PubMed  Google Scholar 

  • Robles-Almazan M, Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Rodriguez-Garcia C, Quiles JL, Ramirez-Tortosa M (2018) Hydroxytyrosol: bioavailability, toxicity, and clinical applications. Food Res Int 105:654–667

    CAS  PubMed  Google Scholar 

  • Rodríguez C, Lavandera I, Gotor V (2012) Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr Org Chem 16(21):2525–2541

    Google Scholar 

  • Santos M, Piccirillo C, Castro PM, Kalogerakis N, Pintado M (2012) Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J Microbiol Biotechnol 28(6):2435–2440

    CAS  PubMed  Google Scholar 

  • Shuster Ben-Yosef V, Fishman A (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol 17(4):188–200

  • Shuster Ben-Yosef V, Sendovski M, Fishman A (2010) Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzyme Microb Technol 47(7):372–376

    CAS  Google Scholar 

  • Tan D, Zhao J-P, Ran G-Q, Zhu X-L, Ding Y, Lu X-Y (2019) Highly efficient biocatalytic synthesis of L-DOPA using in situ immobilized Verrucomicrobiumspinosum tyrosinase on polyhydroxyalkanoate nano-granules. Appl Microbiol Biotechnol 103(14):5663–5678

  • Truppo M (2012) Cofactor recycling for enzyme catalyzed processes. In: Yamamoto H, Carreira EM (eds) Comprehensive chirality, vol 7. Elsevier, pp 46–70

  • Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interf Sci 258:1–20

    CAS  Google Scholar 

  • Zhang Z-L, Chen J, Xu Q, Rao C, Qiao C (2012) Efficient synthesis of hydroxytyrosol from 3, 4-dihydroxybenzaldehyde. Synth Commun 42(6):794–798

    CAS  Google Scholar 

  • Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34(1):279–309

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, grant number 419/15. We also acknowledge the Russell-Berrie Nanotechnology Institute (RBNI) at the Technion for supporting this research. The authors are thankful for support from COST Action CM1303 (SysBiocat). MR is thankful to the Slovak Research and Development Agency contract no. APVV-16-0314 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Fishman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deri-Zenaty, B., Bachar, S., Rebroš, M. et al. A coupled enzymatic reaction of tyrosinase and glucose dehydrogenase for the production of hydroxytyrosol. Appl Microbiol Biotechnol 104, 4945–4955 (2020). https://doi.org/10.1007/s00253-020-10594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10594-z

Keywords

Navigation