Skip to main content

Advertisement

Log in

Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, is highly effective against a broad range of fungal plant pathogens, but at low yields. Elicitation is an effective method of stimulating the yield of bioactive secondary metabolites. In this study, the biomass and filtrate of a culture broth of Escherichia coli JM109, Bacillus subtilis WB600, Saccharomyces cerevisiae, and Fusarium oxysporum f. sp. cucumerinum were employed as elicitors to promote rimocidin production in S. rimosus M527. Adding culture broth and biomass of S. cerevisiae (A3) and F. oxysporum f. sp. cucumerinum (B4) resulted in an increase of rimocidin production by 51.2% and 68.3% respectively compared with the production under normal conditions in 5-l fermentor. In addition, quantitative RT-PCR analysis revealed that the transcriptions of ten genes (rimA to rimK) located in the gene cluster involved in rimocidin biosynthesis in A3 or B4 elicitation experimental group were all higher than those of a control group. Using a β-glucuronidase (GUS) reporter system, GUS enzyme activity assay, and Western blot analysis, we discovered that elicitation of A3 or B4 increased protein synthesis in S. rimosus M527. These results demonstrate that the addition of elicitors is a useful approach to improve rimocidin production.

Key Points

• An effective strategy for enhancing rimocidin production in S. rimosus M527 is demonstrated.

• Overproduction of rimocidin is a result of higher expressed structural genes followed by an increase in protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33(6 Pt 1):798–811

    CAS  PubMed  Google Scholar 

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32(6):1180–1204

    CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3(7):619–627

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Escudero L, Al-Refai M, Nieto C, Laatsch H, Malpartida F, Seco EM (2015) New rimocidin/CE-108 derivatives obtained by a crotonyl-CoA carboxylase/reductase gene disruption in Streptomyces diastaticus var. 108: substrates for the polyene carboxamide synthase PcsA. PLoS One 10(8):e0135891

  • Farid MA, El-Enshasy HA, El-Diwany AI, El-Sayed ESA(2000) Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. J Basic Microbiol 40:157–166

  • Hansen LH, Ferrari B, Sørensen AH, Veal D, Sørensen SJ (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 67(1):239–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon BJ, Kim JD, Han JW, Kim BS (2016) Antifungal activity of rimocidin and a new rimocidin derivative BU16 produced by Streptomyces mauvecolor BU16 and their effects on pepper anthracnose. J Appl Microbiol 120(5):1219–1228

    CAS  PubMed  Google Scholar 

  • Jones SE, Elliot MA (2017) Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol 25(7):522–531

    CAS  PubMed  Google Scholar 

  • Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH (2018) Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol 9:2221

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Deng Z, Liu T (2018) Streptomyces species: ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84

    CAS  PubMed  Google Scholar 

  • Lu D, Ma Z, Xu X, Yu X (2016) Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum. J Basic Microbiol 56(8):929–933

    CAS  PubMed  Google Scholar 

  • Luti KJ, Mavituna F (2011) Elicitation of Streptomyces coelicolor with dead cells of Bacillus subtilis and Staphylococcus aureus in a bioreactor increases production of undecylprodigiosin. Appl Microbiol Biotechnol. 90(2):461–466

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12(2):1043–1065

    PubMed  PubMed Central  Google Scholar 

  • Ma Z, Luo S, Xu X, Bechthold A, Yu X (2016) Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628. J Ind Microbiol Biotechnol 43(4):463–471

  • Ma Z, Tao L, Bechthold A, Shentu X, Bian Y, Yu X (2014) Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol 98(11):5051–5058

    CAS  PubMed  Google Scholar 

  • Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) β-Glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77(15):5370–5383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann A, Baginski M, Czub J (2010) How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. J Am Chem Soc 132(51):18266–18272

    CAS  PubMed  Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Abdollahi Mandoulakani B (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99(14):6418–6430

    CAS  PubMed  Google Scholar 

  • Okada BK, Seyedsayamdost MR (2017) Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41(1):19–33

    CAS  PubMed  Google Scholar 

  • Ola AR, Thomy D, Lai D, Brötz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76(11):2094–2099

    CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Babalola OO (2019) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 103(3):1179–1188

    CAS  PubMed  Google Scholar 

  • Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83(1):19–25

    CAS  PubMed  Google Scholar 

  • Pettit RK (2011) Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol 4(4):471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phornphisutthimas S, Sudtachat N, Bunyoo C, Chotewutmontri P, Panijpan B, Thamchaipenet A (2010) Development of an intergeneric conjugal transfer system for rimocidin-producing Streptomyces rimosus. Lett Appl Microbiol 50(5):530–536

    CAS  PubMed  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182

    PubMed  PubMed Central  Google Scholar 

  • Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X (2008) Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from D-glucose. J Appl Microbiol 105(6):1768–1776

    CAS  PubMed  Google Scholar 

  • Recio E, Aparicio JF, Rumbero A, Martín JF (2006) Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology. 152(Pt 10):3147–3156

  • Ren XD, Chen XS, Zeng X, Wang L, Tang L, Mao ZG (2015) Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 38(6):1113–1125

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    CAS  PubMed  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106(34):14558–14563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seco EM, Pérez-Zúñiga FJ, Rolón MS, Malpartida F (2004) Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol 11(3):357–366

    CAS  PubMed  Google Scholar 

  • Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci U S A 111(20):7266–7271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya P, Marslin G, Siram K, Beerhues L, Franklin G (2019) Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol 71(1):70–82

    CAS  PubMed  Google Scholar 

  • Shin CS, Kim HJ, Kim MJ, Ju JY (1998) Morphological change and enhanced pigment production of monascus when cocultured with Saccharomyces cerevisiae or Aspergillus oryzae. Biotechnol Bioeng 59(5):576–581

    CAS  PubMed  Google Scholar 

  • Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106

    CAS  PubMed  Google Scholar 

  • Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41(2):90–96

    CAS  PubMed  Google Scholar 

  • Somjaipeng S, Medina A, Magan N (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzym Microb Technol 90:69–75

    CAS  Google Scholar 

  • Song ZQ, Liao ZJ, Hu YF, Ma Z, Bechthold A, Yu XP (2019) Development and optimization of an intergeneric conjugation system and analysis of promoter activity in Streptomyces rimosus M527. J Zhejiang Univ Sci B 20(11):891–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sowiński P, Pawlak J, Borowski E, Gariboldi P (1995) Stereostructure of rimocidin. J Antibiot (Tokyo) 48(11):1288–1291

    Google Scholar 

  • Subban K, Subramani R, Srinivasan VPM, Johnpaul M, Chelliah J (2019) Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One 14(2):e0212736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh JH, Shin CS (2000) Analysis of the morphologic changes of Monascus sp. J101 cells cocultured with Saccharomyces cerevisiae. FEMS Microbiol Lett 193(1):143–147

    CAS  PubMed  Google Scholar 

  • Sun JL, Zou X, Liu AY, Xiao TF (2011) Elevated yield of monacolin K in Monascus purpureus by fungal elicitor and mutagenesis of UV and LiCl. Biol Res 44(4):377–382

    CAS  PubMed  Google Scholar 

  • Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8(8):e72520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Izawa M, Hiraga Y, Misaki Y, Watanabe T, Ochi K (2017) Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Appl Microbiol Biotechnol 101(11):4417–4431

    CAS  PubMed  Google Scholar 

  • Toghueo RMK, Sahal D, Zabalgogeazcoa Í, Baker B, Boyom FF (2018) Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitol Res 117(8):2473–2485

    PubMed  Google Scholar 

  • Wakefield J, Hassan HM, Jaspars M, Ebel R, Rateb ME (2017) Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Front Microbiol 8:1284

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Wei L, Zhang Y, Zhang M, Gu S (2017) Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Appl Microbiol Biotechnol 101(17):6705–6712

    CAS  PubMed  Google Scholar 

  • Wang D, Yuan J, Gu S, Shi Q (2013) Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 97(12):5527–5534

    CAS  PubMed  Google Scholar 

  • Wang W, Yu L, Zhou P (2006) Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. Bioresour Technol 97(1):26–31

    CAS  PubMed  Google Scholar 

  • Wu C, Zacchetti B, Ram AF, van Wezel GP, Claessen D, Hae Choi Y (2015) Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci Rep 5:10868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Nazari B, Moon K, Bushin LB, Seyedsayamdost MR (2017a) Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc 139(27):9203–9212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Wang J, Bechthold A, Ma Z, Yu X (2017b) Selection of an efficient promoter and its application in toyocamycin production improvement in Streptomyces diastatochromogenes 1628. World J Microbiol Biotechnol 33(2):30

    PubMed  Google Scholar 

  • Yu J, Liu Q, Chen C, Qi X (2017) Antifungal activity change of Streptomyces rimosus MY02 mediated by confront culture with other microorganism. J Basic Microbiol 57(3):276–282

    CAS  PubMed  Google Scholar 

  • Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43(2):238–261

    CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    CAS  PubMed  Google Scholar 

  • Zhang X, Hindra, Elliot MA (2019) Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol 51:9–15

    CAS  PubMed  Google Scholar 

  • Zhao YF, Lu DD, Bechthold A, Ma Z, Yu XP (2018) Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145. J Zhejiang Univ Sci B 19(9):708–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Song Z, Ma Z, Bechthold A, Yu X (2019) Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations. J Ind Microbiol Biotechnol. 46(5):697–708

Download references

Contributors

ZQ Song conducted the experiments and wrote this article. Z Ma and A Bechthold designed the research and revised this article. XP Yu checked the final version. All authors read and approved the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (31772213, 31972320), excellent youth fund of Zhejiang province, China (LR17C140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Ma, Z., Bechthold, A. et al. Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527. Appl Microbiol Biotechnol 104, 4445–4455 (2020). https://doi.org/10.1007/s00253-020-10565-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10565-4

Keywords

Navigation