Skip to main content
Log in

Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Panax ginseng is a traditional Chinese medicine with significant pharmaceutical effects and broad application. Rare ginsenosides with high antitumor activities can be generated via oriented modification of their glycosyl moiety. For this purpose, suitable microorganisms and their enzymatic systems can be used. In this review, we address several issues associated with these systems. Under aerobic conditions, fungus biotransformation provides an efficient and inexpensive biotransformation process that can be easily scaled up. Considering the profound use of probiotics, wild strains generally recognized as safe have shown a potential through classical fermentation in food manufacturers of deglycosylated ginsenosides. Commonly applied recombinant enzymes from E. coli, especially recombinant hyperthermophilic enzymes, showed efficient conversion in biomedical or pharmaceutical industries. In this review, key genes dedicated to the production of ginsenosides (especially in Saccharomyces cerevisiae) are highlighted in relation to the large-scale production of ginsenosides. We also evaluate biocatalytic strategies that are aimed to improve product specificity and biocatalytic efficiency with industrial applications. Perspectives of protein engineering and solvent engineering in the development and large-scale preparation of ginsenosides in anticancer drugs, food and health care products are explored.

Key Points

Modification of ginsenosides with food/engineered microorganisms is summarized.

Optimization of cell factories by protein engineering remains challenging.

Solvent engineering offers an attractive potential alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY (2016) In vitro and in vivo anti-inflammatory activities of Korean red ginseng-derived components. J Ginseng Res 40:437–444

    PubMed  PubMed Central  Google Scholar 

  • Bi Y, Wang Z, Mao Y, Zheng S, Zhang H, Shi H (2012) Ionic liquid effects on the activity of β-glycosidase for the synthesis of salidroside in co-solvent systems. Chin J Catal 33(7–8):1161–1165

  • Brakowski R, Pontius K, Franzreb M (2016) Investigation of the transglycosylation potential of ß-Galactosidase from Aspergillus oryzae, in the presence of the ionic liquid. J Mol Catal B-Enzym 130:48–57

    CAS  Google Scholar 

  • Brogan APS, Bui-Le L, Hallett JP (2018) Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nature Chem 10(8):859–865

  • Chen JY, Kaleem I, He DM, Liu GY, Li C (2012) Efficient production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by whole-cell biocatalysis in an ionic liquid/buffer biphasic system. Process Biochem 47:908–913

    CAS  Google Scholar 

  • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetylCoA metabolism. Metab Eng 15:48–54

    PubMed  CAS  Google Scholar 

  • Chen WQ, Zheng RS, Baade PD, Zhang SW, Zeng HM, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. Ca-Cancer J Clin 66:115–132

    PubMed  Google Scholar 

  • Choi JH, Shin KC, Oh DK (2018) An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS One 13:e0191018

    PubMed  PubMed Central  Google Scholar 

  • Coelho MA, Ribeiro BD (2015) White biotechnology or sustainable chemistry, Chapter 6: biocatalysis in ionic liquids. Royal Society of Chemistry, London, pp 136–177

  • Czajka JJ, Nathenson JA, Benites VT, Baidoo EEK, Cheng Q, Wang Y, Tang YJ (2018) Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microb Cell Factories 17:136

    Google Scholar 

  • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    PubMed  CAS  Google Scholar 

  • Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, Sun CK, Kim SC, Im WT (2014) Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg 2 (S). Plos One 9:e96914

    PubMed  PubMed Central  Google Scholar 

  • Duan ZG, Deng J, Dong Y, Zhu CH, Li WN, Fan DD (2017) Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food Funct 8:3723–3736

  • Duan ZG, Wei B, Deng JJ, Mi Y, Dong YF, Zhu CH, Fu RZ, Qu LL, Fan DD (2018) The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo. Biochem Bioph Res Co 499:482–487

    CAS  Google Scholar 

  • Egorova KS, Ananikov VP (2018) Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. Biophys Rev 10(3):1–20

    Google Scholar 

  • Elgharbawy AAM, Moniruzzaman M, Goto M (2020) Recent advances of enzymatic reactions in ionic liquids: part II. Biochem Eng J 154:107426

    Google Scholar 

  • Eom SJ, Kim KT, Paik HD (2018) Microbial bioconversion of ginsenosides in Panaxginseng and their improved bioactivities. Food Rev Int 34(7):698–712

  • Fan DD, Duan ZG, Hui JF, Mi Y, Ma P, Zhu CH, Li WN, Ma XX (2016) A method for large-scale conversion of protopanaxadiol saponins to ginsenoside Rk1. CN201610344506.3[P]

  • Ferdjani S, Ionita M, Roy B, Dion M, Djeghaba Z, Rabiller C, Tellier C (2011) Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnol Lett 33:1215–1219

    PubMed  CAS  Google Scholar 

  • Ferrer M, Martı’nez-Martı’nez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34

    PubMed  CAS  Google Scholar 

  • Gao WW, Zhang FX, Zhang GX, Zhou CH (2015) Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem Eng J 99:67–84

    CAS  Google Scholar 

  • Gebhardt S, Bihler S, Schubert-Zsilavecz M, Riva S, Monti D, Falcone L, Danieli B (2015) Biocatalytic generation of molecular diversity: modification of Ginsenoside Rb1 by β-1,4-Galactosyltransferase and Candida antarctica lipase, part 4. Helv Chim Acta 85:1943–1959

    Google Scholar 

  • Goldfeder M, Fishman A (2014) Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biot 98:545–554

    CAS  Google Scholar 

  • Graebin NG, Schöffer JN, Dd A, Hertz PF, Ayub MA, Rodrigues RC (2016) Immobilization of glycoside hydrolase families GH1, GH13, and GH70: state of the art and perspectives. Molecules 21(8):1074

    PubMed Central  Google Scholar 

  • Guo XW, Hu ND, Sun GZ, Li M, Zhang PT (2018) Shenyi capsule plus chemotherapy versus chemotherapy for non-small cell lung cancer: a systematic review of overlapping meta-analyses[J]. Chin J Integr Med 24(3):227–231

    PubMed  CAS  Google Scholar 

  • Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52(12):2062–2073

    PubMed  CAS  Google Scholar 

  • He J, Ma X, Zhang F, Li L, Fan D (2014) New strategy for expression of recombinant hydroxylated human collagen α1 ( III ) chains in Pichia pastoris GS115. Biotechnol Appl Bioc 62(3):293–299

    Google Scholar 

  • Hong Y, Fan D (2019a) Ginsenoside Rk1 induces cell death through ROS-mediated, TEN/PI3K/Akt/mTOR signaling pathway in MCF-7 cells. J Funct Foods 57:255–265

    CAS  Google Scholar 

  • Hong Y, Fan D (2019b) Ginsenoside Rk1 induces cell cycle arrest and apoptosis in MDA-MB-231 triple negative breast cancer cells. Toxicology 418:22–31

    PubMed  CAS  Google Scholar 

  • Huq MA, Akter SK, Kim YJ, Farh MA, Yang DC (2016) Biotransformation of major ginsenoside Rb1 to pharmacologically active ginsenoside Rg3 through fermentation by Weissella hellenica DC06 in newly developed medium. Bangladesh J Sci Ind Res 51:271

    CAS  Google Scholar 

  • Juneidi I, Hayyan A, Hayyan A (2017) Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction. Biochem Eng J 117:129–138

    CAS  Google Scholar 

  • Kim KA, Jung IH, Park SH, Ahn YT, Huh CS, Kim DH (2013) Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS One 8:e62409

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH (2014) Bioavailability of Ginsenosides from white and red ginsengs in the simulated digestion model. J Agr Food Chem 62:10055–10063

    CAS  Google Scholar 

  • Kim TH, Yang EJ, Shin KC, Hwang KH, Park JS, Oh DK (2018) Enhanced production of β-D-glycosidase and α-L-arabinofuranosidase in recombinant Escherichia coli, in fed-batch culture for the biotransformation of ginseng leaf extract to ginsenoside compound K. Biotechnol Bioproc E 23:183–193

    CAS  Google Scholar 

  • Ku S (2016) Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: a mini review. Molecules 21:645

    PubMed Central  Google Scholar 

  • Ku S, You HJ, Park MS, Ji GE (2015) Effects of ascorbic acid on α-L-arabinofuranosidase and α-L-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J Korean Soc Appl Bi 58:857–865

    CAS  Google Scholar 

  • Ku S, You HJ, Park MS, Ji GE (2016) Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J Microbiol Biotechnol 26:1206

    PubMed  CAS  Google Scholar 

  • Kudou M, Kubota Y, Nakashima N, Okazaki F, Nakashima K, Ogino C, Kondo A (2014) Improvement of enzymatic activity of β-glucosidase from Thermotoga maritima by 1-butyl-3-methylimidazolium acetate. J Mol Catal B-Enzym 104:17–22

    CAS  Google Scholar 

  • Lee CH, Kim JH (2015) A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 38:161–166

    Google Scholar 

  • Li WN, Fedosov SN, Tan TW, Xu XB, Guo Z (2014a) Kinetic insights of DNA/RNA segment salts catalyzed Knoevenagel condensation reaction. ACS Catal 4:3294–3300

    CAS  Google Scholar 

  • Li WN, Shen H, Tao Y, Chen BQ, Tan TW (2014b) Amino silicones finished fabrics for lipase immobilization: fabrics finishing and catalytic performance of immobilized lipase. Process Biochem 49:1488–1496

    CAS  Google Scholar 

  • Li LJ, Jin YR, Wang XZ, Liu Y, Wu Q, Shi XL, Li XW (2015) Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection. J Sep Sci 38:3055

    PubMed  CAS  Google Scholar 

  • Li LB, Fan DD, Ma XX, Deng J, He J (2015a) High-level secretory expression and purification of unhydroxylated human collagen α1(III) chain in Pichia pastoris GS115. Biotechnol Appl Biochem 62(4):467–475

    PubMed  CAS  Google Scholar 

  • Li WN, Li R, Yu XC, Xu XB, Guo Z, Tan TW, Fedosov SN (2015b) Lipase-catalyzed Knoevenagel condensation in water–ethanol solvent system. Does the enzyme possess the substrate promiscuity? Biochem Eng J 101:99–107

    Google Scholar 

  • Li WN, Shen H, Ma M, Liu L, Cui CX, Chen BQ, Fan DD, Tan TW (2015c) Synthesis of ethyl oleate by esterification in a solvent-free system using lipase immobilized on PDMS-modified nonwoven viscose fabrics. Process Biochem 50:1859–1869

    CAS  Google Scholar 

  • Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS (2016) Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of β-glucosidase gene from Paenibacillus mucilaginosus. J Agr Food Chem 64:2506–2512

    CAS  Google Scholar 

  • Li W, Shang Z, Duan Z, Li LB, He J, Fan DD (2017) Production of gastric-mucosa protective collagen III by Pichia pastoris. Chin J Biotech 33(4):672–682

    Google Scholar 

  • Lin F, Guo X, Lu W (2015) Efficient biotransformation of ginsenoside Rb1 to Rd by isolated Aspergillus versicolor, excreting β-glucosidase in the spore production phase of solid culture. Anton Leeuw J G 108:1117–1127

    CAS  Google Scholar 

  • Liu YN, Fan DD (2018) Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct 9:5513

    PubMed  CAS  Google Scholar 

  • Liu Y, Fan D (2019) Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 168:285–304

    PubMed  CAS  Google Scholar 

  • Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, Xu LQ, Jin FX (2015) Preparation of minor ginsenosides C-mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g. 848. J Ginseng Res 39:221–229

    PubMed  CAS  Google Scholar 

  • Lu J, Yao L, Li JX, Liu SJ, Hu YY, Wang SH, Liang WX, Huang LQ, Dai YJ, Wang J, Gao WY (2018) Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rg1 and Rb1 and identification of critical conserved amino acid residues for its function. J Agric Food Chem 66:9446–9945

    PubMed  CAS  Google Scholar 

  • Ma XX, Fan DD, Zhu CH, Shang ZF, Mi Y (2014) Optimization of fermentation medium for collagen production of recombinant Pichia pastoris during induction phase. J Chem Pharm Res 6(7):802–1809

    Google Scholar 

  • Molina G, Contesini FJ, de Melo RR, Sato HH, Pastore GM (2016) β-Glucosidase from Aspergillus. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 155–169

    Google Scholar 

  • Moser S, Pichler H (2019) Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biot 103(14):5501–5516

    CAS  Google Scholar 

  • Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY (2014) Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biot 98:6243–6254

    CAS  Google Scholar 

  • Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biot 87:9–19

    CAS  Google Scholar 

  • Pandey M, Verma RK, Saraf SA (2010) Nutraceuticals: New era of medicine and health. Asian J Pharm Clin Res 3:11–15

  • Park SJ, Choi JM, Kyeong HH, Kim SG, Kim HS (2015) Rational design of a β-glycosidase with high regiospecificity for triterpenoid tailoring. ChemBioChem 16:854–860

    PubMed  CAS  Google Scholar 

  • Pei JJ, Wu T, Yao T, Zhao L, Ding G, Wang Z, Xiao W (2017) Biotransformation of ginsenosides Re and Rg 1 into Rg 2 and Rh 1 by thermostable β -glucosidase from Thermotoga thermarum. Chem Nat Compd+ 53:472–477

    CAS  Google Scholar 

  • Pereira G, de Oliveira CB, Magalhaes A, Thomaz-Soccol V, Soccol C (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36:2060–2076

    Google Scholar 

  • Qu L, Zhu Y, Liu Y, Yang H, Zhu C, Ma P, Deng J, Fan D (2019) Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis. FoLiuod and Chemical Toxicology 126:277–284

    CAS  Google Scholar 

  • Quan LH, Min JW, Sathiyamoorthy S, Yang DU, Kim YJ, Yang DC (2012) Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnol Lett 34:913–917

    PubMed  CAS  Google Scholar 

  • Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, Li P, Lw Q (2015) Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep-UK 5:8598

    CAS  Google Scholar 

  • Ribeiro BD, Santos AG, Marrucho IM (2015) CHAPTER 6. Biocatalysis in ionic liquids. In: White biotechnology for sustainable chemistry, Green Chemistry Series. The Royal Society of Chemistry, London, pp 136–177

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    PubMed  CAS  Google Scholar 

  • Rossi M, Amaretti A, Leonardi A, Raimondi S, Simone M, Quartieri A (2013) Potential impact of probiotic consumption on the bioactivity of dietary phytochemicals. J Agric Food Chem 61:9551–9558

    PubMed  CAS  Google Scholar 

  • Samaei-Daryan S, Goliaei B, Ebrahim-Habibi A, Ebrahim-Habibi A (2017) Characterization of surface binding sites in glycoside hydrolases: a computational study. J Mol Recognit 30:1–12

    Google Scholar 

  • Shao M, Qiu J, Wu H, Liu Y, Liu L (2014) Mechanism of shenyi capsule concomitant with endostar and chemotherapy on the growth and apoptosis of MCF-7 breast cancer cells. J Int Transl Med 2:299–302

    Google Scholar 

  • Sheldon RA (2014) Chapter 2 Biocatalysis in ionic liquids catalysis in ionic liquids: from catalyst synthesis to application. The Royal Society of Chemistry, London, pp 20–43

    Google Scholar 

  • Shen H, Leung WI, Ruan JQ, Li SL, Lei JC, Wang YT, Yan R (2013) Biotransformation of ginsenoside Rb1 via the gypenoside pathway by human gut bacteria. Chin Med-UK 8:22

    Google Scholar 

  • Shin KC, Oh DK (2015) Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 36:1036–1049

    PubMed  Google Scholar 

  • Shin KC, Kim TH, Choi JH, Oh DK (2018) Complete biotransformation of protopanaxadiol-type ginsenosides to 20- O - β -glucopyranosyl-20(S)-protopanaxadiol using a novel and thermostable β -glucosidase. J Agr Food Chem 66:2822–2829

    CAS  Google Scholar 

  • Singh S(2019)Probiotics Market worth $69.3 billion by 2023. Market research report. https://www.marketsandmarkets.com/PressReleases/probiotics.asp. Accessed Jan 2019

  • Sohrabvandi S, Mortazavian A, Dolatkhahnejad M-R, Monfared A (2012) Suitability of MRS-bile agar for the selective enumeration of mixed probiotic bacteria in presence of mesophilic lactic acid cultures and yoghurt bacteria. Iran J Biotechnol 10:16–21

    Google Scholar 

  • Sonntag F, Kroner C, Lubuta P, Peyraud R, Horst A, Buchhaupt M, Schrader J (2015) Engineering Methylobacterium extorquens for denovo synthesis of the sesquiterpenoid α-humulene from methanol. Metab Eng 32:82–94

    PubMed  CAS  Google Scholar 

  • Sun S, Wang CZ, Tong R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS (2010) Effects of steaming the root of Panax notoginseng on chemical composition and anticancer activities. Food Chem 118:307–314

    CAS  Google Scholar 

  • Teng R, Ang C, Mcmanus D, Armstrong D, Mau S, Bacic A (2004) Regioselective acylation of ginsenosides by novozyme 435 to generate molecular diversity. Helv Chim Acta 87:1860–1872

    CAS  Google Scholar 

  • Toral AR, Ríos APDL, Hernández FJ, Janssen MHA, Schoevaart R, Rantwijk FV, Sheldon RA (2007) Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb Tech 40:1095–1099

    CAS  Google Scholar 

  • Upadhyaya J, Kim MJ, Kim YH, Ko SR, Park HW, Kim MK (2016) Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J Ginseng Res 40:105–112

    PubMed  Google Scholar 

  • Venardos D, Klei HE, Sundstrom DW (1980) Conversion of cellobiose to glucose using immobilized β-glucosidase reactors. Enzyme Microb Tech 2:112–116

    CAS  Google Scholar 

  • Vila-Real H, Alfaia AJ, Rosa JN, Gois PMP, Rosa ME, Calado ART, Ribeiro MH (2011) α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol-gel matrices: activity and stability studies. J Biotechnol 152:147–158

    PubMed  CAS  Google Scholar 

  • Wang D, Liao PY, Zhu HT, Chen KK, Xu M, Zhang YJ, Yang CR (2012) The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 132:1808–1813

    CAS  Google Scholar 

  • Wang JR, Yau LF, Zhang R, Xia Y, Ma J, Ho HM, Hu P, Hu M, Liu L, Jiang ZH (2014) Transformation of ginsenosides from Notoginseng by artificial gastric juice can increase cytotoxicity toward cancer cells. J Agr Food Chem 62:2558–2573

    CAS  Google Scholar 

  • Wang P, Wei Y, Fan Y, Liu Q, Wei W, Yang C, Zhang L, Zhao G, Yue J, Yan X, Zhou Z (2015) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 29:97–105

    PubMed  Google Scholar 

  • Wang CZ, Anderson S, Du W, He TC, Yuan CS (2016a) Red ginseng and cancer treatment. Chin J Nat Medicines 14:7–16

    Google Scholar 

  • Wang Y, Choi KD, Yu H, Jin FX, Im WT (2016b) Production of ginsenoside F1 using commercial enzyme Cellulase KN. J Ginseng Res 40:121–126

    PubMed  Google Scholar 

  • Wang CZ, Yao HQ, Zhang CF, Chen LN, Wan JY, Huang WH, Zeng JX, Zhang QH, Liu Z, Yuan JB, Bi Y, Sava-Segal C, Du W, Xu M, Yuan CS (2018) American ginseng microbial metabolites attenuate DSS-induced colitis and abdominal pain. Int Immunopharmacol 64:246–251

    PubMed  CAS  Google Scholar 

  • Wang P, Wei W, Ye W, Li X, Zhao W, Yang C, Li C, Yan X, Zhou Z (2019) Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 5(1):5–18

    PubMed  PubMed Central  Google Scholar 

  • Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechno Adv 30:1119–1139

    CAS  Google Scholar 

  • Wei GQ, Zheng YN, Li W, Liu WC, Lin T, Zhang WY, Chen HF, Zeng JZ, Zhang XK, Chen QC (2012) Structural modification of ginsenoside Rh2 by fatty acid esterification and its detoxification property in antitumor. Bioorg Med Chem Lett 22:1082–1085

    PubMed  CAS  Google Scholar 

  • Wei W, Wang P, Wei Y, Liu Q, Yang C, Zhao G, Yue J, Yan X, Zhou Z (2015) Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8(9):1412–1424

    PubMed  CAS  Google Scholar 

  • Won HJ, Kim H, Park T, Kim H, Jo K, Jeon H, Ha SJ, Hyun JM, Jeong A, Kim JS, Park YJ, Eo YH, Lee J (2018) Nonclinical pharmacokinetic behavior of ginsenosides. J Ginseng Res 43(3):354–360

    PubMed  PubMed Central  Google Scholar 

  • Wong AS, Che CM, Leung KW (2014) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32:256–272

    Google Scholar 

  • Wriessnegger T, Pichler H (2013) Yeast metabolic engineering-targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293

    PubMed  CAS  Google Scholar 

  • Xie J, Zhao D, Zhao L, Pei J, Xiao W, Ding G, Wang Z, Xu J (2016) Characterization of a novel arabinose-tolerant α-L-arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J Appl Microbiol 120:14

    Google Scholar 

  • Xu P, Zheng GW, Du PX, Zong MH, Lou WY (2016) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4:371–386

    CAS  Google Scholar 

  • Xu WJ, Huang YK, Li F, Wang DD, Yin MN, Wang M, Xia ZN (2018) Improving β-glucosidase biocatalysis with deep eutectic solvents based on choline chloride. Biochem Eng J 138:37–46

    CAS  Google Scholar 

  • Yan S, Wei PC, Chen Q, Chen X, Wang S, Li J, Gao C (2018) Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria. Biochem Bioph Res Co 496(4):1349–1356

    CAS  Google Scholar 

  • Yang WZ, Hu Y, Wu WY, Ye M, Guo DA (2014) Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 106:7–24

    PubMed  CAS  Google Scholar 

  • Yang XD, Yang YY, Ouyang DS, Yang GP (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220

    PubMed  CAS  Google Scholar 

  • Yang TX, Zhao LQ, Wang J, Song GL, Liu HM, Cheng H, Yang Z (2017) Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustain Chem Eng 5:5713–5722

    CAS  Google Scholar 

  • Youn SY, Park MS, Ji GE (2012) Identification of the β-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J Microbiol Biotechnol 22:1714–1723

    PubMed  CAS  Google Scholar 

  • Yu ZH, Li QY, Cui L, Jia XB, Zhang ZH, Jin X (2014) Transformation of rare ginsenoside compound K from ginsenoside Rb1 catalyzed by snailase immobilization onto microspheres. Chin Tradit Herbal Drugs 45:3092–3097

    CAS  Google Scholar 

  • Yu L, Chen Y, Shi J, Wang RF, Yang YB, Yang L, Zhao SJ, Wang ZT (2019) Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with UDP-glycosyltransferase genes. J Ginseng Res 43:116–124

    PubMed  Google Scholar 

  • Yuan N, Cogill S, Luo H (2016) Chapter 20 - Development of molecular strategies for gene containment and marker-free genetically modified organisms. In: Watson RR, Preedy VR (eds) Genetically modified organisms in food. Academic Press, San Diego, pp 223–236

    Google Scholar 

  • Yuan Y, Luan XN, Hassan ME, Hassan ME, Dou DQ (2017) Covalent immobilization of cellulase in application of biotransformation of ginsenoside Rb1. J Mol Catal B Enzym 133:S525–S532

    Google Scholar 

  • Zhang Q, Zhao WQ, Meng F, Zhang YX (2012) Transformation of ginsenoside F1 from ginsenoside Rg1 catalyzed by immobilized ß-glycosidase. Chin J Antibiot 37:49–55

    Google Scholar 

  • Zhang L, Li F, Qin WJ, Fu C, Zhang XL (2018) Changes in intestinal microbiota affect metabolism of ginsenoside Re. Biomed Chromatogr Bmc 2018:e4284

    Google Scholar 

  • Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids-a review. J Chem Technol Biot 85:891–907

    CAS  Google Scholar 

  • Zhao F, Bai P, Liu T, Li D, Zhang X, Lu W, Yuan Y (2016) Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol Bioeng 113(8):1787–1795

  • Zhou W, Huang H, Zhu H, Zhu HY, Zhou P, Shi XL (2018) New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation. J Ginseng Res 42:199–207

    PubMed  Google Scholar 

  • Zhuang Y, Yang G, Chen X, Liu Q, Zhang X, Deng Z, Feng Y (2017) Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 42:25–32

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21706211, 21576160, 21706213), and the Shaanxi Provincial Scientific Technology Research and Development Program (2019JQ-720, 2017KJXX-02).

Author information

Authors and Affiliations

Authors

Contributions

Li WN wrote the manuscript. Fan DD conceived and designed the mini-review.

Corresponding author

Correspondence to Dai-Di Fan.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WN., Fan, DD. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives. Appl Microbiol Biotechnol 104, 3807–3823 (2020). https://doi.org/10.1007/s00253-020-10455-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10455-9

Keywords

Navigation