Skip to main content
Log in

Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Piceatannol is a valuable natural polyphenol with therapeutic potential in cardiovascular and metabolic disease treatment. In this study, we screened for microorganisms capable of producing piceatannol from resveratrol via regioselective hydroxylation. In the first screening, we isolated microorganisms utilizing resveratrol, phenol, or 4-hydroxyphenylacetic acid as a carbon source for growth. In the second screening, we assayed the isolated microorganisms for hydroxylation of resveratrol. Using this screening procedure, a variety of resveratrol-converting microorganisms were obtained. One Gram-negative bacterium, Ensifer sp. KSH1, and one Gram-positive bacterium, Arthrobacter sp. KSH3, utilized 4-hydroxyphenylacetic acid as a carbon source for growth and efficiently hydroxylated resveratrol to piceatannol without producing any detectable by-products. The hydroxylation activity of strains KSH1 and KSH3 was strongly induced by cultivation with 4-hydroxyphenylacetic acid as a carbon source during stationary growth phase. Using the 4-hydroxyphenylacetic acid–induced cells as a biocatalyst under optimal conditions, production of piceatannol by strains KSH1 and KSH3 reached 3.6 mM (0.88 g/L) and 2.6 mM (0.64 g/L), respectively. We also cloned genes homologous to the monooxygenase gene hpaBC from strains KSH1 and KSH3. Introduction of either hpaBC homolog into Escherichia coli endowed the host with resveratrol-hydroxylating activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benová B, Adam M, Onderková K, Královský J, Krajícek M (2008) Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection. J Sep Sci 31:2404–2409

    Article  CAS  PubMed  Google Scholar 

  • Bernini R, Barontini M, Spatafora C (2009) New lipophilic piceatannol derivatives exhibiting antioxidant activity prepared by aromatic hydroxylation with 2-iodoxybenzoic acid (IBX). Molecules 14:4669–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantos E, Espín JC, Fernández MJ, Oliva J, Tomás-Barberán FA (2003) Postharvest, UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J Agric Food Chem 51:1208–1214

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kino K (2014a) Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol 98:1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kino K (2014b) Regioselective synthesis of piceatannol from resveratrol: catalysis by two-component flavin-dependent monooxygenase HpaBC in whole cells. Tetrahedron Lett 55:2853–2855

    Article  CAS  Google Scholar 

  • Furuya T, Hirose S, Osanai H, Semba H, Kino K (2011) Identification of the monooxygenase gene clusters responsible for the regioselective oxidation of phenol to hydroquinone in mycobacteria. Appl Environ Microbiol 77:1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Miura M, Kino K (2014) A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin. Chembiochem 15:2248–2254

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Sai M, Kino K (2015a) Biocatalytic synthesis of 3,4,5,3′,5′-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC. Biosci Biotechnol Biochem 80:193–198

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Miura M, Kuroiwa M, Kino K (2015b) High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process. N Biotechnol 32:335–339

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Sai M, Kino K (2018) Efficient monooxygenase-catalyzed piceatannol production: application of cyclodextrins for reducing product inhibition. J Biosci Bioeng 126:478–481

    Article  CAS  PubMed  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D (2018) Two-component FAD-dependent monooxygenases: current knowledge and biotechnological opportunities. Biology 7:E42

    Article  PubMed  Google Scholar 

  • Heo KT, Kang SY, Jang JH, Hong YS (2017) Sam5, a coumarate 3-hydroxylase from Saccharothrix espanaensis: new insight into the piceatannol production as a resveratrol 3′-hydroxylase. Chemistryselect 2:8785–8789

    Article  CAS  Google Scholar 

  • Jones JA, Collins SM, Vernacchio VR, Lachance DM, Koffas MA (2016) Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC. Biotechnol Prog 32:21–25

    Article  CAS  PubMed  Google Scholar 

  • Kershaw J, Kim KH (2017) The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: a review. J Med Food 20:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Ahn T, Jung HC, Pan JG, Yun CH (2009) Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metab Dispos 37:932–936

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90:417–425

    Article  CAS  PubMed  Google Scholar 

  • Ko HJ, Bang WG, Kim KH, Choi IG (2012) Production of p-acetaminophenol by whole-cell catalysis using Escherichia coli overexpressing bacterial aryl acylamidase. Biotechnol Lett 34:677–682

    Article  CAS  PubMed  Google Scholar 

  • Kwon JY, Seo SG, Heo YS, Yue S, Cheng JX, Lee KW, Kim KH (2012) Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J Biol Chem 287:11566–11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Kim EJ, Kim BG (2012) Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680. ACS Chem Biol 7:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Lee SH, Baek K, Kim BG (2015) Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol. Appl Microbiol Biotechnol 99:7915–7924

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yan Y (2014) Biotechnological production of plant-specific hydroxylated phenylpropanoids. Biotechnol Bioeng 111:1895–1899

    Article  CAS  PubMed  Google Scholar 

  • Loewen PC, Switala J, Wells JP, Huang F, Zara AT, Allingham JS, Loewen MC (2018) Structure and function of a lignostilbene-α,β-dioxygenase orthologue from Pseudomonas brassicacearum. BMC Biochem 19(8)

  • Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J Agric Food Chem 58:11112–11118

    Article  CAS  PubMed  Google Scholar 

  • McAndrew RP, Sathitsuksanoh N, Mbughuni MM, Heins RA, Pereira JH, George A, Sale KL, Fox BG, Simmons BA, Adams PD (2016) Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proc Natl Acad Sci U S A 113:14324–14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei YZ, Liu RX, Wang DP, Wang X, Dai CC (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18

    Article  CAS  PubMed  Google Scholar 

  • Mitsukura K, Kondo Y, Yoshida T, Nagasawa T (2006) Regioselective hydroxylation of adamantane by Streptomyces griseoplanus cells. Appl Microbiol Biotechnol 71:502–504

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  CAS  PubMed  Google Scholar 

  • Prieto MA, Perez-Aranda A, Garcia JL (1993) Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. J Bacteriol 175:2162–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimal H, Yu SC, Lee JH, Tokutaro Y, Oh TJ (2018) Hydroxylation of resveratrol with DoxA in vitro: an enzyme with the potential for the bioconversion of a bioactive stilbene. J Microbiol Biotechnol 28:561–565

    CAS  PubMed  Google Scholar 

  • Roh C, Kang C (2014) Production of anti-cancer agent using microbial biotransformation. Molecules 19:16684–16692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano S, Sugiyama K, Ito T, Katano Y, Ishihata A (2011) Identification of the strong vasorelaxing substance scirpusin B, a dimer of piceatannol, from passion fruit (Passiflora edulis) seeds. J Agric Food Chem 59:6209–6213

    Article  CAS  PubMed  Google Scholar 

  • Setoguchi Y, Oritani Y, Ito R, Inagaki H, Maruki-Uchida H, Ichiyanagi T, Ito T (2014) Absorption and metabolism of piceatannol in rats. J Agric Food Chem 62:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • Seyed MA, Jantan I, Bukhari SN, Vijayaraghavan K (2016) A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J Agric Food Chem 64:725–737

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Pandey RP, Pokhrel AR, Dhakal D, Chu LL, Sohng JK (2018) Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Appl Microbiol Biotechnol 102:9691–9706

  • Stella L, De Rosso M, Panighel A, Vedova AD, Flamini R, Traldi P (2008) Collisionally induced fragmentation of [M-H](-) species of resveratrol and piceatannol investigated by deuterium labelling and accurate mass measurements. Rapid Commun Mass Spectrom 22:3867–3872

    Article  CAS  PubMed  Google Scholar 

  • Tang YL, Chan SW (2014) A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytother Res 28:1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T (2015) Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull 38:629–633

    Article  CAS  PubMed  Google Scholar 

  • Yamashita Y, Biard A, Hanaya K, Shoji M, Sugai T (2017) Short-step syntheses of naturally occurring polyoxygenated aromatics based on site-selective transformation. Biosci Biotechnol Biochem 81:1279–1284

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Japan Science and Technology Agency (JST), Adaptable & Seamless Technology Transfer Program, through Target-driven R&D (A-STEP) AS251Z01150N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiki Furuya or Kuniki Kino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuya, T., Imaki, N., Shigei, K. et al. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol. Appl Microbiol Biotechnol 103, 5811–5820 (2019). https://doi.org/10.1007/s00253-019-09875-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09875-z

Keywords

Navigation