Skip to main content

Advertisement

Log in

Miniaturization of Starmerella bombicola fermentation for evaluation and increasing (novel) glycolipid production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Both strain engineering and process optimization are intensively studied in microbial biosurfactant literature. However, screening of multiple strains and/or medium components in parallel is a very labor-intensive and timely process, considering the only applied technique nowadays is evaluation through shake flask and/or bioreactor experiments. Therefore, in this work, the development, optimization, and application of a more throughput technique—based on 24-deep well plates—are described for a new Starmerella bombicola strain producing bolaform sophorolipids. To develop an optimal setup, the influence of plate position and culture volume and the type of sandwich cover was investigated. Optimal parameters, which did not result in significant differences compared with shake flask experiments concerning growth, glucose consumption, and production of novel sophorolipids, were defined and validated. Next, the new method was applied to evaluate the influence of the use of alternative (commercial) nitrogen sources in comparison with the yeast extract currently applied in the production medium, aiming to increase production efficiency. Self-made yeast extracts from S. bombicola cells were also included to evaluate possible recycling of cells after fermentation. In conclusion, the designed method enabled the efficient and successful comparison of ten different nitrogen sources in varying concentrations (1, 4, and 10 g/L) on bola sophorolipid production, which can now also be performed for other parameters important for growth and/or glycolipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht A, Rau U, Wagner F (1996) Initial steps of sophoroselipid biosynthesis by Candida bombicola ATCC 22214 grown on glucose. Appl Microbiol Biotechnol 46:67–73

    Article  CAS  PubMed  Google Scholar 

  • Asmer HJJ, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. JAOCS 65:1460–1466

    Article  CAS  Google Scholar 

  • Aspmo SI, Horn SJ, Eijsink VGH (2005) Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiol Lett 248:65–68

    Article  CAS  PubMed  Google Scholar 

  • Baccile N, Nassif N, Malfatti L, Van Bogaert INA, Soetaert W, Pehau-Arnaudet G, Babonneau F (2010) Sophorolipids: a yeast-derived glycolipid as greener structure directing agents for self-assembled nanomaterials. Green Chem 12:1564–1567

    Article  CAS  Google Scholar 

  • Baccile N, Babonneau F, Banat IM, Ciesielska K, Cuvier AS, Devreese B, Everaert B, Lydon H, Marchant R, Mitchell CA, Roelants SLKW, Six L, Theeuwes E, Tsatsos G, Tsotsou GE, Vanlerberghe B, Van Bogaert INA, Soetaert W (2017) Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sustain Chem Eng 5:1186–1198

    Article  CAS  Google Scholar 

  • Bajaj V, Tilay A, Annapure U (2012) Enhanced production of bioactive sophorolipids by Starmerella bombicola NRRL Y-17069 by design of experiment approach with successive purification and characterization. J Oleo Sci 17(61):377–386

    Article  Google Scholar 

  • BD Biosciences (2015) BD bionutrients TM 18 technical manual - advanced bioprocessing. p. 80. https://www.bd.com/documents/guides/user-guides/DS_CM_Bionutrients-technical-manual_UG_EN.pdf

  • Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas JA, García-Ochoa F (1999) Sophorolipid production by Candida bombicola: medium composition and culture methods. J Biosci Bioeng 88:488–494

    Article  CAS  PubMed  Google Scholar 

  • Casas JA, García de Lara S, García-Ochoa F (1997) Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzym Microb Technol 21(3):221–229

    Article  CAS  Google Scholar 

  • Casey JT, O’Cleirigh C, Walsh PK, O’Shea DG (2004) Development of a robust microtiter plate-based assay method for assessment of bioactivity. J Microbiol Meth 58:327–334

    Article  CAS  Google Scholar 

  • Chae HJ, Joo H, In MJJ (2001) Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour Technol 76:253–258. 33

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang H, Liu Y, Fu S, Liu X (2014) Metal ions can affect the composition and production of sophorolipids by Wickerhamiella domercqiae Y2A CGMCC 3798. Eur J Lipid Sci Technol 116:1505–1512

    Article  CAS  Google Scholar 

  • Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. J Appl Environ Microbiol 47:173–176

    CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces 79:246–253

    Article  CAS  PubMed  Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JPP (1992) Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11

    Article  CAS  Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JPP (1994) Sophorose lipid production from lipidic precursors: predictive evaluation of industrial substrates. J Ind Microbiol Biotechnol 13:249–257

    CAS  Google Scholar 

  • De Graeve M, De Maeseneire S, Roelants SLKW, Soetaert W (2018) Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res 18:1–13

    Article  CAS  Google Scholar 

  • Develter D, Fleurackers S (2011) Sophorolactone production. US20140194336A1, 28p

  • Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469–475

    Article  CAS  PubMed  Google Scholar 

  • Duetz WA, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. J Biochem Eng J 17:181–185

    Article  CAS  Google Scholar 

  • Duetz WA, Rüedi L, Hermann R, O'Connor K, Büchs J, Witholt B (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 66:2641–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshikh M, Moya-Ramírez I, Moens H, Roelants SLKW, Soetaert W, Marchant R, Banat IM (2017) Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 123:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • European Commision (2018) Circular economy: closing the loop. Available at: http://ec.europa.eu/environment/circular-economy/index_en.htm. Accessed 13 March 2019

  • Fariya M, Jain A, Dhawan V, Shah S, Nagarsenker MS (2014) Bolaamphiphiles: a pharmaceutical review. Adv Pharm Bull 4:483–491

    PubMed  PubMed Central  Google Scholar 

  • Felse PA, Shah V, Chan J, Rao KJ, Gross RA (2007) Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzym Microb Technol 40:316–323

    Article  CAS  Google Scholar 

  • Gao R, Falkeborg M, Xu X, Guo Z (2013) Production of sophorolipids with enhanced volumetric productivity by means of high cell density fermentation. Appl Microbiol Biotechnol 97:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Ghisellini P, Cialani C, Ulgiati S (2016) A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod 114:11–32

    Article  Google Scholar 

  • Glenns RN, Cooper DG (2006) Effect of substrate on sophorolipid properties. JAOCS 83:137–145

    Article  CAS  Google Scholar 

  • Göbbert U, Lang S, Wagner F (1984) Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 6:225–230

    Article  Google Scholar 

  • Guilmanov V, Ballistreri A, Impallomeni G, Gross RA (2002) Oxygen transfer rate and sophorose lipid production by Candida bombicola. Biotechnol Bioeng 77:489–494

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez LEE (1993) Effect of some vitamins and micronutrient deficiencies on the production of higher alcohols by Saccharomyces cerevisiae. Sci Agric 50:484–489

    Article  CAS  Google Scholar 

  • Hommel RK, Stegner S, Kleber HP, Weber L (1994) Effect of ammonium ions on glycolipid production by Candida (Torulopsis) apicola. Appl Microbiol Biotechnol 42:192–197

    CAS  Google Scholar 

  • Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N32 glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Peñalver P, Gea T, Sánchez A, Font X (2016) Production of sophorolipids from winterization oil cake by solid-state fermentation: optimization, monitoring and effect of mixing. J Biochem Eng 115:93–100

    Article  CAS  Google Scholar 

  • Kim YB, Yun HS, Kim EK (2009) Enhanced sophorolipid production by feeding-rate-controlled fed-batch culture. Bioresour Technol 100:6028–6032

    Article  CAS  PubMed  Google Scholar 

  • Lang S, Brakemeier A, Heckmann R, Spöckner S, Rau U (2000) Production of native and modified sophorose lipids. Chim Oggi 18:76–79

    CAS  Google Scholar 

  • Lodens S, De Graeve M, Roelants SLKW, De Maeseneire SL, Soetaert W (2018) Transformation of an exotic yeast species into a platform organism: a case study for engineering glycolipid production in the yeast Starmerella bombicola. In: Braman J (ed) Synthetic biology “methods in molecular biology”. Springer Protocols, Humana Press, New York (NY), pp 95–123

  • Luengo JM, Revilla J, Villanueva JR, Martin JF (1979) Lysine regulation of penicillin biosynthesis in low producing and industrial strains of Penicillium chrysogenum. J Gen Microbiol 115:207–211

    Article  CAS  PubMed  Google Scholar 

  • Minas W, Baileys EB, Duetz WA (2000) Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie Van Leeuwenhoek 78:297–305

    Article  CAS  PubMed  Google Scholar 

  • Oura K (1983) Biomass from carbohydrates. In: Dellweg H (ed) Biotechnology. Microbial products, biomass, and primary products, vol 3. Verlag Chemie, Weinheim, pp 3–41

  • Papanayotou I, Sun B, Roth AF, Davis NG (2010) Protein aggregation induced during glass bead lysis of yeast. Yeast 27:801–816

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro IA, Bronze MR, Castro MF, Ribeiro MHL (2013) Improvement of the selective production by Starmerella bombicola through the design of nutritional requirements. Appl Microbiol Biotechnol 97:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Rispoli FJ, Badia D, Shah V (2010) Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnol Prog 26:938–944

    CAS  PubMed  Google Scholar 

  • Roelants SLKW, Ciesielska K, De Maeseneire SL, Moens H, Everaert B, Verweire S, Denon Q, Vanlerberghe B, Van Bogaert INA, Van der Meeren P, Devreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 113:550–559

    Article  CAS  PubMed  Google Scholar 

  • Roelants SLKW, Van Renterghem L, Maes K, Everaert B, Redant E, Vanlerberghe B, Demaeseneire S, Soetaert W (2018a) Taking biosurfactants from the lab to the market: hurdles and how to take them by applying an integrated process design approach. In: Banat IM, Thavasi R (eds) Microbial biosurfactants and their environmental and industrial applications. CRC Press, Boca Raton (FL), pp 340–362

  • Roelants SLKW, Solaiman DKY, Ashby R, Van Renterghem L, Lodens S, Soetaert W (2018b) Chapter 3: production and application of sophorolipids. In: Hayes DH, Ashby RD, Solaiman DK (eds) Biobased surfactants: synthesis, properties and applications, 2nd edn. Elsevier, AOCS Press, Urbana (IL), 542 p

  • Saerens KMJ, Van Bogaert INA, Soetaert W (2015) Characterization of sophorolipid biosynthetic enzymes from Starmerella bombicola. FEMS Yeast Res 15:1–9

    Article  CAS  Google Scholar 

  • Saksinchai S, Suphantharika M, Verduyn C (2001) Application of a simple yeast extract from spent brewer’s yeast for growth and sporulation of Bacillus thuringiensis subsp. kurstaki: a physiological study. World J Microbiol Biotechnol 17:307–316

    Article  CAS  Google Scholar 

  • Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515

    Article  CAS  PubMed  Google Scholar 

  • Soetaert W, Van Bogaert INA, Roelants SLKW (2013) Methods to produce bolaamphiphilic glycolipids. WO 26 2015028278 A1. 50p

  • Tanguler H, Erten H (2008) Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food Bioprod Process 86:317–321

    Article  Google Scholar 

  • Van Bogaert INA, Saerens K, De Muyck C, Develter D, Soetaert W, Vandamme E (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Buyst D, Martins JC, Roelants SLKW, Soetaert W (2016) Synthesis of bolaform biosurfactants by an engineered Starmerella bombicola yeast. Biotechnol Bioeng 113:2644–2651

    Article  CAS  PubMed  Google Scholar 

  • Van Renterghem L, Roelants SLKW, Baccile N, Uytersprot K, Taelman MC, Everaert B, Mincke S, Ledegen S, Debrouwer S, Scholtens K, Stevens C, Soetaert W (2018) From lab to market: an integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnol Bioeng 115:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Vedaraman N, Venkatesh NM (2010) The effect of medium composition on the production of sophorolipids and the tensiometric properties by Starmerella bombicola MTCC 1910. Pol J Chem Technol 12:9–13

    Article  Google Scholar 

  • Waegeman H, Beauprez J, Maertens J, De Mey M, Demolder L, Foulquié-Moreno MR, Boon N, Charlier D, Soetaert W (2010) Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering. J Biosci Bioeng 110:646–652

    Article  CAS  PubMed  Google Scholar 

  • Zhou QH, Kosaric N (1993) Effect of lactose and olive oil on intra- and extracellular lipids of Torulopsis bombicola. Biotechnol Lett 15:477–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely thank Katelijne Bekers from Ohly for providing the Ohly products and scientific suggestions and for thoroughly proofreading this manuscript. Next, we want to thank Dr. Wouter Duetz (Enzyscreen) for providing the different deep well plates, sandwich covers, and other materials. The authors also wish to thank Novozymes for supplying the proteases that enabled the production of yeast extract.

Funding

This research was funded by the European 7th Framework Program Project IB2Market (grant number 111043), and European Horizon 2020 Bio-Based Industries (BBI) Consortium Project Carbosurf (grant number 669003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie L.K.W. Roelants.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Renterghem, L., Clicque, H., Huyst, A. et al. Miniaturization of Starmerella bombicola fermentation for evaluation and increasing (novel) glycolipid production. Appl Microbiol Biotechnol 103, 4347–4362 (2019). https://doi.org/10.1007/s00253-019-09766-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09766-3

Keywords

Navigation