Skip to main content
Log in

Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pactamycin, a structurally unique aminocyclitol natural product isolated from Streptomyces pactum, has potent antibacterial, antitumor, and anti-protozoa activities. However, its production yields under currently used culture conditions are generally low. To understand how pactamycin biosynthesis is regulated and explore the possibility of improving pactamycin production in S. pactum, we investigated the transcription regulations of pactamycin biosynthesis. In vivo inactivation of two putative pathway-specific regulatory genes, ptmE and ptmF, resulted in mutant strains that are not able to produce pactamycin. Genetic complementation using a cassette containing ptmE and ptmF integrated into the S. pactum chromosome rescued the production of pactamycin. Transcriptional analysis of the ΔptmE and ΔptmF strains suggests that both genes control the expression of the whole pactamycin biosynthetic gene cluster. However, attempts to overexpress these regulatory genes by introducing a second copy of the genes in S. pactum did not improve the production yield of pactamycin. We discovered that pactamycin biosynthesis is sensitive to phosphate regulation. Concentration of inorganic phosphate higher than 2 mM abolished both the transcription of the biosynthetic genes and the production of the antibiotic. Draft genome sequencing of S. pactum and bioinformatics studies revealed the existence of global regulatory genes, e.g., genes that encode a two-component PhoR-PhoP system, which are commonly involved in secondary metabolism. Inactivation of phoP did not show any significant effect to pactamycin production. However, in the phoP::aac(3)IV mutant, pactamycin biosynthesis is not affected by external inorganic phosphate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abugrain ME, Lu W, Li Y, Serrill JD, Brumsted CJ, Osborn AR, Alani A, Ishmael JE, Kelly JX, Mahmud T (2016) Interrogating the tailoring steps of pactamycin biosynthesis and accessing new pactamycin analogues. ChemBioChem 17:1585–1588

    Article  CAS  Google Scholar 

  • Abugrain ME, Brumsted CJ, Osborn AR, Philmus B, Mahmud T (2017) A highly promiscuous β-ketoacyl-ACP synthase (KAS) III-like protein is involved in pactamycin biosynthesis. ACS Chem Biol 12:362–366

    Article  CAS  Google Scholar 

  • Almabruk KH, Lu W, Li Y, Abugreen M, Kelly JX, Mahmud T (2013) Mutasynthesis of fluorinated pactamycin analogues and their antimalarial activity. Org Lett 15:1678–1681

    Article  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Bhuyan BK (1962) Pactamycin production by Streptomyces pactum. Appl Microbiol 10:302–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibb M (1996) 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142(Pt 6):1335–1344

    Article  CAS  Google Scholar 

  • Bibb M, Hesketh A (2009) Chapter 4. Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 458:93–116

    Article  CAS  Google Scholar 

  • Dobashi K, Isshiki K, Sawa T, Obata T, Hamada M, Naganawa H, Takita T, Takeuchi T, Umezawa H, Bei HS, Zhu BQ, Tong C, Xu WS (1986) 8"-Hydroxypactamycin and 7-deoxypactamycin, new members of the pactamycin group. J Antibiot 39:1779–1783

    Article  CAS  Google Scholar 

  • Fernandez-Martinez LT, Santos-Beneit F, Martin JF (2012) Is PhoR-PhoP partner fidelity strict? PhoR is required for the activation of the pho regulon in Streptomyces coelicolor. Mol Gen Genomics 287:565–573

    Article  CAS  Google Scholar 

  • Hara T, Niida T, Sato K, Kondo S, Noguchi T, Kohmoto K (1964) A new antibiotic, cranomycin. J Antibiot 17:266

    CAS  PubMed  Google Scholar 

  • Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7:d2045–d2057

    CAS  PubMed  Google Scholar 

  • Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287

    Article  CAS  Google Scholar 

  • Hurley TR, Smitka TA, Wilton JH, Bunge RH, Hokanson GC, French JC (1986) PD 113,618 and PD 118,309, new pactamycin analogs. J Antibiot 39:1086–1091

    Article  CAS  Google Scholar 

  • Ito T, Roongsawang N, Shirasaka N, Lu W, Flatt PM, Kasanah N, Miranda C, Mahmud T (2009) Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues. ChemBioChem 10:2253–2265

    Article  CAS  Google Scholar 

  • Iwatsuki M, Nishihara-Tsukashima A, Ishiyama A, Namatame M, Watanabe Y, Handasah S, Pranamuda H, Marwoto B, Matsumoto A, Takahashi Y, Otoguro K, Omura S (2012) Jogyamycin, a new antiprotozoal aminocyclopentitol antibiotic, produced by Streptomyces sp. a-WM-JG-16.2. J Antibiot 65:169–171

    Article  CAS  Google Scholar 

  • Kenney LJ (2002) Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5:135–141

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation Norwich, England

    Google Scholar 

  • Kondo SI, Shimura M, Sezaki M, Sato K, Hara T (1964) Isolation and characterization of cranomycin, a new antibiotic. J Antibiot 17:230–233

    CAS  PubMed  Google Scholar 

  • Li R, Liu G, Xie Z, He X, Chen W, Deng Z, Tan H (2010) PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi. Mol Microbiol 75:349–364

    Article  CAS  Google Scholar 

  • Liu W, Hulett FM (1997) Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J Bacteriol 179:6302–6310

    Article  CAS  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143

    Article  CAS  Google Scholar 

  • Lu W, Roongsawang N, Mahmud T (2011) Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward malarial parasites. Chem Biol 18:425–431

    Article  CAS  Google Scholar 

  • Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y (2017) Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 Biotech 7:250

    Article  Google Scholar 

  • Martin JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273

    Article  CAS  Google Scholar 

  • Martin JF, Sola-Landa A, Santos-Beneit F, Fernandez-Martinez LT, Prieto C, Rodriguez-Garcia A (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4:165–174

    Article  CAS  Google Scholar 

  • Martin JF, Rodriguez-Garcia A, Liras P (2017) The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot 70:534–541

    Article  CAS  Google Scholar 

  • Mendes MV, Tunca S, Anton N, Recio E, Sola-Landa A, Aparicio JF, Martin JF (2007) The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9:217–227

    Article  CAS  Google Scholar 

  • Meyers PR, Bourn WR, Steyn LM, van Helden PD, Beyers AD, Brown GD (1998) Novel method for rapid measurement of growth of mycobacteria in detergent-free media. J Clin Microbiol 36:2752–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otoguro K, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tukashima A, Shibahara S, Kondo S, Yamada H, Omura S (2010) Promising lead compounds for novel antiprotozoals. J Antibiot 63:381–384

    Article  CAS  Google Scholar 

  • Rinehart KL Jr, Weller DD, Pearce CJ (1980) Recent biosynthetic studies on antibiotics. J Nat Prod 43:1–20

    Article  CAS  Google Scholar 

  • Sakuda S, Sugiyama Y, Zhou ZY, Takao H, Ikeda H, Kakinuma K, Yamada Y, Nagasawa H (2001) Biosynthetic studies on the cyclopentane ring formation of allosamizoline, an aminocyclitol component of the chitinase inhibitor allosamidin. J Org Chem 66:3356–3361

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402

    Article  Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  Google Scholar 

  • Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6138

    Article  CAS  Google Scholar 

  • Taber R, Rekosh D, Baltimore D (1971) Effect of pactamycin on synthesis of poliovirus proteins: a method for genetic mapping. J Virol 8:395–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  CAS  Google Scholar 

  • White FR (1962) Pactamycin. Cancer Chemother Rep 24:75–78

    CAS  PubMed  Google Scholar 

  • Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    Article  CAS  Google Scholar 

  • Wiley PF, Jahnke HK, MacKellar F, Kelly RB, Argoudelis AD (1970) The structure of pactamycin. J Org Chem 35:1420–1425

    Article  CAS  Google Scholar 

  • Xie P, Sheng Y, Ito T, Mahmud T (2012) Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains. Appl Microbiol Biotechnol 96:451–460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Benjamin Philmus for a critical reading of this manuscript and Maureen J. Bibb and John Innes Centre for providing plasmid pIJ6902.

Funding

This work was supported by grant AI129957 from the National Institute of Allergy And Infectious Diseases. The content is solely the responsibility of the authors and does not represent the official views of the National Institute of Allergy And Infectious Diseases, or the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taifo Mahmud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 5901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Alanzi, A.R., Abugrain, M.E. et al. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum. Appl Microbiol Biotechnol 102, 10589–10601 (2018). https://doi.org/10.1007/s00253-018-9375-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9375-9

Keywords

Navigation