Skip to main content
Log in

Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results—in combination with in silico analysis of databases—indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We thank Weber and Schaer company (Hamburg) for providing polyisoprene and PreSens (Regensburg) for sensor spots.

Funding

This work was supported by a grant of the Deutsche Forschungsgemeinschaft to D J. (JE 152 18-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jendrossek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethic approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birke, J., Röther, W. & Jendrossek, D. Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Appl Microbiol Biotechnol 102, 10245–10257 (2018). https://doi.org/10.1007/s00253-018-9341-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9341-6

Keywords

Navigation