Skip to main content
Log in

Genome-wide screening identifies promiscuous phosphatases impairing terpenoid biosynthesis in Escherichia coli

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Terpenoids are a large family of natural compounds that are important for both biotechnological applications and basic microorganism physiology. Inspired by the current literature, we hypothesized that recently deciphered phosphatase promiscuity may be an unexplored factor that negatively affects terpenoid biosynthesis by redirecting carbon flux away from the pathway via unrecognized catalytic activities on the phosphorylated intermediates. We used lycopene as a proof-of-concept to test this hypothesis. Based on an extensive bioinformatics analysis, we selected 56 phosphatase-encoding genes in Escherichia coli and constructed a knockdown library for these genes in a lycopene overproducer via CRISPR interference (CRISPRi). We screened this phosphatase knockdown library and observed enrichment (28 of 56) for genes that impair lycopene biosynthesis. Further scaled-up cultivation, combinatorial knockdown, and knockout assays in strains that overproduce lycopene or another terpenoid (β-carotene) confirmed the proposed relationship between promiscuous phosphatases and impaired terpenoid biosynthesis. This study hence suggests the necessity of reconsidering the interactions of promiscuous phosphatases with ubiquitous phosphorylated components of metabolic networks with respect to engineering metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    Article  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  Google Scholar 

  • Chou HH, Keasling JD (2012) Synthetic pathway for production of five-carbon alcohols from isopentenyl diphosphate. Appl Environ Microbiol 78:7849–7855

    Article  CAS  Google Scholar 

  • Fang M, Wang T, Zhang C, Bai J, Zheng X, Zhao X, Lou C, Xing X-H (2016) Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 33:41–51

    Article  CAS  Google Scholar 

  • George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389

    CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  • Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Factories 12:84

    Article  Google Scholar 

  • Guggisberg AM, Park J, Edwards RL, Kelly ML, Hodge DM, Tolia NH, Odom AR (2014) A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Nat Commun 5:4467

    Article  CAS  Google Scholar 

  • Guzmán GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, Palsson BO, Feist AM (2015) Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci 112:929–934

    Article  Google Scholar 

  • Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N (2015) Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Proc Natl Acad Sci 112:10050–10055

    Article  CAS  Google Scholar 

  • Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M, Zheng L, Toews Keating S, Aono M, Love JD, Evans B, Seidel RD, Hillerich BS, Garforth SJ, Almo SC, Mariano PS, Dunaway-Mariano D, Allen KN, Farelli JD (2015) Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci 112:E1974–E1983

    Article  CAS  Google Scholar 

  • Iverson S, Haddock TL, Beal J, Densmore D (2016) CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enables rapid combinatorial design for synthetic and traditional biology. ACS Synth Biol 5:99–103

    Article  CAS  Google Scholar 

  • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome using the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  CAS  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    Article  CAS  Google Scholar 

  • Kim SK, Han GH, Seong W, Kim H, Kim S-W, Lee D-H, Lee S-G (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240

    Article  CAS  Google Scholar 

  • Kunjapur AM, Tarasova Y, Prather KLJ (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 136:11644–11654

    Article  CAS  Google Scholar 

  • Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF (2006) Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 281:36149–36161

    Article  CAS  Google Scholar 

  • Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y, Chen T, Zhao X (2015) Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng 31:13–21

    Article  Google Scholar 

  • Liang W-F, Cui L-Y, Cui J-Y, Yu K-W, Yang S, Wang T-M, Guan C-G, Zhang C, Xing X-H (2017) Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng 39:159–168

    Article  CAS  Google Scholar 

  • Liu L, Pan A, Spofford C, Zhou N, Alper HS (2015) An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29:36–45

    Article  Google Scholar 

  • Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93:2455–2462

    Article  CAS  Google Scholar 

  • Lv L, Ren Y-L, Chen J-C, Wu Q, Chen G-Q (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2011) Coexisting/coexpressing genomic libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes. Nucleic Acids Res 39:e152

    Article  Google Scholar 

  • Özaydın B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183

    Article  Google Scholar 

  • Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo B-M, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506

    Article  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  Google Scholar 

  • Quester S, Schomburg D (2011) EnzymeDetector: an integrated enzyme function prediction tool and database. BMC Bioinformatics 12:376

    Article  Google Scholar 

  • Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Soon Lee T, Mukhopadhyay A, Petzold CJ (2011) Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng 13:194–203

    Article  CAS  Google Scholar 

  • Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33

    Article  CAS  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  • Sonnhammer ELL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322

    Article  CAS  Google Scholar 

  • Takehara M, Nishimura M, Kuwa T, Inoue Y, Kitamura C, Kumagai T, Honda M (2014) Characterization and thermal isomerization of (all-E)-lycopene. J Agric Food Chem 62:264–269

    Article  CAS  Google Scholar 

  • Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S (2018) Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol Syst Biol 14:e7899

    Article  Google Scholar 

  • Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D (n.d.) A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat Commun:1–10

  • Wang C, Yoon S-H, Shah AA, Chung Y-R, Kim J-Y, Choi E-S, Keasling JD, Kim S-W (2010) Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng 107:421–429

    Article  CAS  Google Scholar 

  • Wang T, Mori H, Zhang C, Kurokawa K, Xing X-H, Yamada T (2015) DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe. BMC Bioinformatics 16:96

    Article  Google Scholar 

  • Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing X-H (2018) Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 9:2475

    Article  Google Scholar 

  • Warnecke TE, Lynch MD, Karimpour-Fard A, Sandoval N, Gill RT (2008) A genomics approach to improve the analysis and design of strain selections. Metab Eng 10:154–165

    Article  CAS  Google Scholar 

  • Wewetzer SJ, Kunze M, Ladner T, Luchterhand B, Roth S, Rahmen N, Kloß R, Costa E Silva A, Regestein L, Büchs J (2015) Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J Biol Eng 9:9

    Article  CAS  Google Scholar 

  • Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283

    Article  CAS  Google Scholar 

  • Xie X, Wong WW, Tang Y (2007) Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metab Eng 9:379–386

    Article  CAS  Google Scholar 

  • Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  CAS  Google Scholar 

  • Xu H, Xiao T, Chen C-H, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157

    Article  CAS  Google Scholar 

  • Yuan LZ, Rouvière PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JPP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nature 20:123–128

    CAS  Google Scholar 

  • Zhang S, Zhao X, Tao Y, Lou C (2015) A novel approach for metabolic pathway optimization: oligo-linker mediated assembly (OLMA) method. J Biol Eng 9:23

    Article  Google Scholar 

  • Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program of China (2016YFF0202303), the National Key Scientific Instrument and Equipment Project of NSFC (21627812), the General Program of NSFC (21676156), and the Tsinghua University Initiative Scientific Research Program (20161080108).

Author information

Authors and Affiliations

Authors

Contributions

T.W. proposed the idea of this work. T.W. and J.G. performed the preliminary strain construction, CRISPRi method establishment, and bioinformatics analysis. T.W., J.G., and Y.L. performed the screening experiments. T.W., Y.L. J.G., Z.X., C.Z., and X.X. analyzed the results. T.W., J.G., and C.Z. wrote the manuscript based on discussion among all authors. C.Z., Z.X., and X.X. supervised the project.

Corresponding authors

Correspondence to Zhenglian Xue or Chong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Guo, J., Liu, Y. et al. Genome-wide screening identifies promiscuous phosphatases impairing terpenoid biosynthesis in Escherichia coli. Appl Microbiol Biotechnol 102, 9771–9780 (2018). https://doi.org/10.1007/s00253-018-9330-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9330-9

Keywords

Navigation