Skip to main content
Log in

Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

White spot disease caused by the white spot syndrome virus (WSSV) has a major socio-economic impact on shrimp farming in India. It has been realized that a field-usable diagnostic capable of rapid detection of WSSV can prevent huge economic losses in disease outbreaks. In this work, we explored the possibility of using a peptide as bio-recognition probe in a field-usable device for the detection of WSSV from infected shrimps and prawns. A commercially available random phage-display library was screened against rVP28 (a major structural protein of WSSV, expressed as a recombinant protein in Escherichia coli). A bacteriophage clone VP28-4L was obtained, and its binding to purified rVP28 protein as well as WSSV from infected shrimp Litopaeneus vannamei tissue was confirmed by ELISA and western blot. The apparent equilibrium dissociation constant (Kd,app) was calculated to be 810 nM. VP28-4L did not show cross-reactivity with any other shrimp viruses. A 12-mer peptide (pep28, with the sequence ′TFQAFDLSPFPS′) displayed on the VP28-4L was synthesized, and its diagnostic potential was evaluated in a lateral flow assay (LFA). Visual detection of WSSV could be achieved using biotinylated-pep28 and streptavidin-conjugated gold nanoparticles. In LFA, 12.5 μg/mL of the virus could be detected from L. vannamei gill tissue homogenate within 20 min. Pep28 thus becomes an attractive candidate in bio-recognition of WSSV in field-usable diagnostic platforms benefitting the aquaculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal S, Kulabhusan PK, Joshi M, Bodas D, Paknikar KM (2016) A high affinity phage-displayed peptide as a recognition probe for the detection of SalmonellaTyphimurium. J Biotechnol 231:40–45. doi:10.1016/j.jbiotec.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  • Archer MJ, Liu JL (2009) Bacteriophage T4 nanoparticles as materials in sensor applications: variables that influence their organization and assembly on surfaces. Sensors 9(8):6298–6311. doi:10.3390/s90806298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordeaux J, Welsh AW, Agarwal S, Killiam E, Baquero MT, Hanna JA, Anagnostou V, Rimm DL (2010) Antibody validation. BioTechniques 48(3):197. doi:10.2144/000113382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psych Meas 20:37–46

    Article  Google Scholar 

  • Ding YL, Liu MY, Han W, Yang SL, Liu H, Gong Y (2005) Application of phage-displayed single chain antibodies in western blot. Acta Biochim Biophy sinica 37(3):205–209. doi:10.1093/abbs/37.3.205

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in Monodisperse gold suspensions. Nat Phys Sci 241(105):20–22. doi:10.1038/physci241020a0

    Article  CAS  Google Scholar 

  • Goldman ER, Pazirandeh MP, Charles PT, Balighian ED, Anderson GP (2002) Selection of phage displayed peptides for the detection of 2, 4, 6-trinitrotoluene in seawater. Anal Chim Acta 457(1):13–19. doi:10.1016/S0003-2670(01)01246-6

    Article  CAS  Google Scholar 

  • Hermanson GT (2008) Bioconjugate techniques. Pierce Biotechnology, Rockford

  • Hwang HJ, Ryu MY, Park JP (2015) Identification of high affinity peptides for capturing norovirus capsid proteins. RSC Adv 5(68):55300–55302. doi:10.1039/C5RA09655C

    Article  CAS  Google Scholar 

  • Kulabhusan PK, Rajwade JM, Sugumar V, Taju G, Sahul hameed AS, Paknikar KM (2017) Field usable lateral flow immunoassay for the rapid detection of white spot syndrome virus (WSSV). PloSOne 12(1):e0169012. doi:10.1371/journal.pone.0169012

    Article  Google Scholar 

  • Lavilla M, Moros M, Puertas S, Grazú V, Pérez MD, Calvo M, Sánchez L (2012) Specific peptides as alternative to antibody ligands for biomagnetic separation of Clostridium tyrobutyricum spores. Anal Bioanal Chem 402(10):3219–3226. doi:10.1007/s00216-011-5621-z

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang YT, Tian DS, Yin ZC, Kwang J (2002) Detection of white spot syndrome virus (WSSV) of shrimp by means of monoclonal antibodies (MAbs) specific to an envelope protein (28 kDa). Dis Aquat Org 49(1):11–18. doi:10.3354/dao049011

    Article  CAS  PubMed  Google Scholar 

  • Marx V (2013) Finding the right antibody for the job. Nat Methods 10(703703):14. doi:10.1038/nmeth.2570

    Google Scholar 

  • Miller L, Michel J, Vogt G, Döllinger J, Stern D, Piesker J, Nitsche A (2014) Identification and characterization of a phage display-derived peptide for orthopoxvirus detection. Anal Bioanal Chem 406(29):7611–7621. doi:10.1007/s00216-014-8150-8

    Article  CAS  PubMed  Google Scholar 

  • Morton J, Karoonuthaisiri N, Stewart LD, Oplatowska M, Elliott CT, Grant IR (2013) Production and evaluation of the utility of novel phage display-derived peptide ligands to Salmonella spp. for magnetic separation. J Appl Microbiol 115(1):271–281. doi:10.1111/jam.12207

    Article  CAS  PubMed  Google Scholar 

  • Musthaq SS, Yoganandhan K, Sudhakaran R, Kumar SR, Hameed AS (2006) Neutralization of white spot syndrome virus of shrimp by antiserum raised against recombinant VP28. Aquaculture 253(1):98–104. doi:10.1016/j.aquaculture.2005.07.032

    Article  Google Scholar 

  • Nadala ECB Jr, Loh PC (2000) Dot-blot nitrocellulose enzyme immunoassays for the detection of white-spot virus and yellow-head virus of penaeid shrimp. J Virol Methods 84(2):175–179. doi:10.1016/S0166-0934(99)00140-8

    Article  PubMed  Google Scholar 

  • Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V (2007) Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 22(6):986–992. doi:10.1016/j.bios.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  • Padmanaban G, Park H, Choi JS, Cho YW, Kang WC, Moon CI, Kim IS, Lee BH (2014) Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library. J Biotechnol 187:43–50. doi:10.1016/j.jbiotec.2014.07.435

    Article  CAS  PubMed  Google Scholar 

  • Park JP, Cropek DM, Banta S (2010) High affinity peptides for the recognition of the heart disease biomarker troponin I identified using phage display. BiotechnolBioeng 105(4):678–686. doi:10.1002/bit.22597

    CAS  Google Scholar 

  • Pavan S, Berti F (2012) Short peptides as biosensor transducers. Anal Bioanal Chem 402(10):3055–3070. doi:10.1007/s00216-011-5589-8

    Article  CAS  PubMed  Google Scholar 

  • Petrenko VA, Smith GP (2000) Phages from landscape libraries as substitute antibodies. Protein Eng 13(8):589–592. doi:10.1093/protein/13.8.589

    Article  CAS  PubMed  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582. doi:10.1016/j.bmcl.2005.07.017

    Article  CAS  PubMed  Google Scholar 

  • Powell JW, Burge EJ, Browdy CL, Shepard EF (2006) Efficiency and sensitivity determination of Shrimple®, an immunochromatographic assay for white spot syndrome virus (WSSV),using quantitative real-time PCR. Aquaculture 257(1):167–172. doi:10.1016/j.aquaculture.2006.03.010

    Article  CAS  Google Scholar 

  • Rao SS, Mohan KVK, Gao Y, Atreya CD (2013) Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. Microbiol Res 168(2):106–112. doi:10.1016/j.micres.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  • Rogers JD, Ajami NJ, Fryszczyn BG, Estes MK, Atmar RL, Palzkill T (2013) Identification and characterization of a peptide affinity reagent for detection of noroviruses in clinical samples. J Clin Microbiol 51(6):1803–1808. doi:10.1128/JCM.00295-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed ASS, Anilkumar M, Raj MS, Jayaraman K (1998) Studies on the pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection in shrimp by immunological methods. Aquaculture 160(1):31–45. doi:10.1016/S0044-8486(97)00221-4

    Article  Google Scholar 

  • Hameed ASS, Balasubramanian G, Musthaq SS, Yoganandhan K (2003) Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). Dis Aquat Org 57(1–2):157–161. doi:10.3354/dao057157

    Article  PubMed  Google Scholar 

  • Siriwattanarat R, Longyant S, Chaivisuthangkura P, Wangman P, Vaniksampanna A, Sithigorngul P (2013) Improvement of immunodetection of white spot syndrome virus using a monoclonal antibody specific for heterologously expressed icp11. Arch Virol 158(5):967–979. doi:10.1007/s00705-012-1569-3

    Article  CAS  PubMed  Google Scholar 

  • Sithigorngul P, Rukpratanporn S, Chaivisuthangkura P, Sridulyakul P, Longyant S (2011) Simultaneous and rapid detection of white spot syndrome virus and yellow head virus infection in shrimp with a dual immunochromatographic strip test. J Virol Methods 173(1):85–91. doi:10.1016/j.jviromet.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  • Takakusagi Y, Kobayashi S, Sugawara F (2005) Camptothecin binds to a synthetic peptide identified by a T7 phage display screen. Bioorg Med Chem Lett 15(21):4850–4853. doi:10.1007/s00705-012-1569-3

    Article  CAS  PubMed  Google Scholar 

  • Turnbough CL (2003) Discovery of phage display peptide ligands for species-specific detection of Bacillus spores. J Microbiol Meth 53(2):263–271. doi:10.1016/S0167-7012(03)00030-7

    Article  CAS  Google Scholar 

  • van Hulten MC, Witteveldt J, Snippe M, Vlak JM (2001) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285(2):228–233. doi:10.1006/viro.2001.0928

    Article  PubMed  Google Scholar 

  • Vaniksampanna A, Longyant S, Wangman P, Sithigorngul P, Chaivisuthangkura P (2017) Enhancement and confirmation of white spot syndrome virus detection using monoclonal antibody specific to VP26. Aquaculture Res 48(4):1699–1710. doi:10.1111/are.13007

  • Varkey PS, Shankar KM, Sathish RP (2014) Computational mapping of interaction sites of synthetic antibody Clone P109d9on VP28 protein. IJIRCCE 2(5):347–351

  • Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, Tyler CR (2016) Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses 8(1):23. doi:10.3390/v8010023

    Article  PubMed Central  Google Scholar 

  • Vlak JM, Bonami JR, Flegel TW, Kou GH, Lightner DV, Loh CF, Loh PC, Walker PW (2005) Nimaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Bal LA (eds) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, pp 187–192 

  • Wang CS, Chang CY, Wen CM (2015) Developing immunological methods for detecting Macrobrachium rosenbergii nodavirus and extra small virus using a recombinant protein preparation. J Fish Dis 39(6):715–727. doi:10.1111/jfd.12404

    Article  PubMed  Google Scholar 

  • Wang YG, Hassan MD, Shariff M, Zamri SM, Chen X (1999) Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. Dis Aquat Org 39(1):1–1. doi:10.3354/dao039001

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Cropek DM, West AC, Banta S (2010) Development of a troponin I biosensor using a peptide obtained through phage display. Anal Chem 82(19):8235–8243. doi:10.1021/ac101657h

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Park JP, Dooley K, Cropek DM, West AC, Banta S (2011) Rapid development of new protein biosensors utilizing peptides obtained via phage display. PLoS One 6(10):e24948. doi:10.1371/journal.pone.0024948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi G, Wang Z, Qi Y, Yao L, Qian J, Hu L (2004) Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Mol bio 37(6):726–734. doi:10.5483/BMBRep.2004.37.6.726

    CAS  Google Scholar 

  • Yoganandhan K, Syed Musthaq S, Narayanan RB, Sahul Hameed AS (2004) Production of polyclonal antiserum against recombinant VP28 protein and its application for the detection of white spot syndrome virus in crustaceans. J Fish Dis 27(9):517–522. doi:10.1111/j.1365-2761.2004.00564.x

    Article  CAS  PubMed  Google Scholar 

  • Yonekita T, Ohtsuki R, Hojo E, Morishita N, Matsumoto T, Aizawa T, Morimatsu F (2013) Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli. J Microbiol Meth 93:251–256. doi:10.1016/j.mimet.2013.03.006

    Article  CAS  Google Scholar 

  • Zhan W, Wang X, Chen J, Xing J, Fukuda H (2004) Elimination of shrimp endogenous alkaline phosphatase background and development of enzyme immunoassays for the detection of white spot syndrome virus (WSSV). Aquaculture 239(1):15–21. doi:10.1016/j.aquaculture.2004.05.042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PK is thankful to the Indian Council of Medical Research (ICMR), Government of India for awarding a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore M. Paknikar.

Ethics declarations

Ethics statement

Samples were collected as part of the National Surveillance Program for Aquatic Animal Diseases (NSPAAD) project; sub-project No. 24. The study was approved by the National Fisheries Development Board (NFDB)-Indian Council of Agricultural Research (ICAR), Government of India. The collection of samples was done as part of NSPAAD project; sub-project No. 24. Therefore, specific permissions were not required. The field studies involve only species cultivated in aquaculture farms/hatcheries.

Conflict of interest

PK declares that he has no conflict of interest.JMR declares that she has no conflict of interest. ASS declares that he has no conflict of interest. KMP declares that he has no conflict of interest. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulabhusan, P.K., Rajwade, J.M., Sahul Hameed, A.S. et al. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe. Appl Microbiol Biotechnol 101, 4459–4469 (2017). https://doi.org/10.1007/s00253-017-8232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8232-6

Keywords

Navigation