Skip to main content
Log in

Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD+ ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD+ ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD+ ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD+ ratio and ATP level is an efficient strategy for succinate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Vlad D, Schuster S, Pfeiffer P, Unden G (1997) Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiol 168(4):290–296

    Article  CAS  PubMed  Google Scholar 

  • Bekker M, de Vries S, Ter Beek A, Hellingwerf K, de Mattos MT (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol 191(17):5510–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F (2002) Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem 277(41):38001–38012

    Article  CAS  PubMed  Google Scholar 

  • Borisov VB, Murali R, Verkhovskaya ML, Bloch DA, Han H, Gennis RB, Verkhovsky MI (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci U S A 108(42):17320–17324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC, Babul J (2011) The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem 286(7):5774–5783

    Article  CAS  PubMed  Google Scholar 

  • Calhoun MW, Oden KL, Gennis RB, de Mattos MJ, Neijssel OM (1993) Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175(10):3020–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarasa C, Faucet V, Dequin S (2007) Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 24(5):391–401

    Article  CAS  PubMed  Google Scholar 

  • Chao YP, Liao JC (1994) Metabolic responses to substrate futile cycling in Escherichia coli. J Biol Chem 269(7):5122–5126

    CAS  PubMed  Google Scholar 

  • Coustou V, Besteiro S, Riviere L, Biran M, Biteau N, Franconi JM, Boshart M, Baltz T, Bringaud F (2005) A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. J Biol Chem 280(17):16559–16570

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181(8):2351–2357

    PubMed  PubMed Central  Google Scholar 

  • de Jongh WA, Nielsen J (2008) Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10(2):87–96

    Article  PubMed  Google Scholar 

  • Enomoto K, Arikawa Y, Muratsubaki H (2002) Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiol Lett 215(1):103–108

    Article  CAS  PubMed  Google Scholar 

  • Enomoto K, Ohki R, Muratsubaki H (1996) Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae. DNA Res 3(4):263–267

    Article  CAS  PubMed  Google Scholar 

  • Forster AH, Gescher J (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Frontiers Biotech Bioeng 2:16

    Google Scholar 

  • Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl Environ Microbiol 45(6):1838–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon EH, Pealing SL, Chapman SK, Ward FB, Reid GA (1998) Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductase from Shewanella putrefaciens NCIMB 400. Microbiology 144:937–945

    Article  CAS  PubMed  Google Scholar 

  • Hadicke O, Bettenbrock K, Klamt S (2015) Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng 112(10):2195–2199

    Article  PubMed  Google Scholar 

  • Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101(19):7675–7678

    Article  CAS  PubMed  Google Scholar 

  • Kihira C, Hayashi Y, Azuma N, Noda S, Maeda S, Fukiya S, Wada M, Matsushita K, Yokota A (2012) Alterations of glucose metabolism in Escherichia coli mutants defective in respiratory-chain enzymes. J Bacteriol 158(4):215–223

    CAS  Google Scholar 

  • Kim Y, Ingram LO, Shanmugam KT (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190(11):3851–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res:gkp1193

  • Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178(20):6013–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Huang B, Wu H, Li Z, Ye Q, Zhang YP (2016) Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth Biol 5(11):1299–1307

    CAS  PubMed  Google Scholar 

  • Li Y, Li M, Zhang X, Yang P, Liang Q, Qi Q (2013) A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour Technol 149:333–340

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P (2012) Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111. Enzym Microb Technol 51(5):286–293

    Article  CAS  Google Scholar 

  • Liang LY, Liu RM, Ma JF, Chen KQ, Jiang M, Wei P (2011) Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase. Biotechnol Lett 33(12):2439–2444

    Article  CAS  PubMed  Google Scholar 

  • Liang Q, Qi Q (2014) From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 32(7):1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, Qi Q (2015) Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci Rep 5:13200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Lin Z, Zhang Y, Li Y, Wang Z, Chen T (2014) Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. J Bacteriol 192:170–176

    CAS  Google Scholar 

  • Liu R, Liang L, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2013) Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour Technol 149:84–91

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Factories 15(1):141

    Article  Google Scholar 

  • Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62(5):1808–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muratsubaki H, Enomoto K (1998) One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene. Arch Biochem Biophys 352(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J (2016) Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol 214:653–659

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R, Roof WD, Young RF, Liao JC (1992) Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 174(23):7527–7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portnoy VA, Herrgard MJ, Palsson BO (2008) Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain. Appl Environ Microbiol 74(24):7561–7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salusjarvi L, Kaunisto S, Holmstrom S, Vehkomaki ML, Koivuranta K, Pitkanen JP, Ruohonen L (2013) Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 40(12):1383–1392

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Cher Soh K, Hatzimanikatis V, Gill RT (2011) Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng 13(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Lynch MD, Gill RT (2009) Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng 11(6):347–354

    Article  CAS  PubMed  Google Scholar 

  • Steinsiek S, Stagge S, Bettenbrock K (2014) Analysis of Escherichia coli mutants with a linear respiratory chain. PLoS One 9(1):e87307

    Article  PubMed  PubMed Central  Google Scholar 

  • Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63(7):2695–2701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stouthamer A (1979) The search for correlation between theoretical and experimental growth yields. Int Rev Biochem 21(1):1–47

    CAS  Google Scholar 

  • Tielens AG, Van Hellemond JJ (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365(1–2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167(6):332–342

    Article  CAS  PubMed  Google Scholar 

  • Van Hellemond JJ, Tielens AG (1994) Expression and functional properties of fumarate reductase. The Biochem J 304:321–331

    Article  CAS  PubMed  Google Scholar 

  • Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68(4):1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikstrom M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A 105(10):3763–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuoristo KS, Mars AE, Sanders JP, Eggink G, Weusthuis RA (2016) Metabolic engineering of TCA cycle for production of chemicals. Trends Biotechnol 34(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yan D, Li Q, Sun W, Xing J (2014) Ionic liquid pretreatment to increase succinic acid production from lignocellulosic biomass. Bioresour Technol 172:283–289

    Article  CAS  PubMed  Google Scholar 

  • Weitzman PD (1981) Unity and diversity in some bacterial citric acid-cycle enzymes. Adv Microb Physiol 22:185–244

    Article  CAS  PubMed  Google Scholar 

  • Werpy T, Petersen G (2004) Volume 1: results of screening for potential candidates from sugars and synthetic gas. Oak Ridge, TN, US Department of Energy

  • Wu H, Tuli L, Bennett GN, San KY (2015) Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli. Metab Eng 28:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Li J, Liu H, Liang Q, Qi Q (2016) ATP-based ratio regulation of glucose and xylose improved succinate production. PLoS One 11(6):e0157775

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X (2014) Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng 24:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the National Basic Research Program of China (2012CB725202), a grant from the National Natural Science Foundation of China (31170097, 31370085), and a grant from the Shandong Science and Technology Development Plan (2015GSF121042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanfeng Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

.

ESM 1

(PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Y., Cui, Z. et al. Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation. Appl Microbiol Biotechnol 101, 3153–3161 (2017). https://doi.org/10.1007/s00253-017-8127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8127-6

Keywords

Navigation