Skip to main content
Log in

Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive (14C) labeling of bioactive products, in order to facilitate the screening for new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Benwakrim A, Tremoliere A, Labarre J, Capdeville Y (1998) The lipid moiety of the GPI-anchor of the major plasma membrane proteins in Paramecium primaurelia is a ceramide: variation of the amide-linked fatty acid composition as a function of growth temperature. Protist 149(1):39–50. doi:10.1016/S1434-4610(98)70008-2

    Article  CAS  PubMed  Google Scholar 

  • Cassier-Chauvat C, Chauvat F (2014) Cell division in cyanobacteria. In: Flores E, Herrero A (eds) The cell biology of cyanobacteria. Caister Academic Press, Norfolk, pp 7–27

    Google Scholar 

  • Cassier-Chauvat C, Chauvat F (2015) Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances. Int J Mol Sci 16(1):871–886. doi:10.3390/ijms16010871

    Article  CAS  Google Scholar 

  • Cassier-Chauvat C, Veaudor T, Chauvat F (2016) Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications. Front Microbiol 7:1809. doi:10.3389/fmicb.2016.01809

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauvat F, Devries L, Vanderende A, Vanarkel GA (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis Pcc 6803. Molecular & general genetics: MGG 204(1):185–191. doi:10.1007/Bf00330208

    Article  CAS  Google Scholar 

  • Chen CH, Van Baalen C, Tabita FR (1987) DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F. J Bacteriol 169(3):1114–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, Thuleau A, L'Hermite MM, Taran F, Dive V (2014) Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS Nano 8(6):5715–5724. doi:10.1021/nn500475u

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Gugger M, Sivonen K, Fewer DP (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23(10):642–652. doi:10.1016/j.tim.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  • Domain F, Houot L, Chauvat F, Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Molecular Microbiol 53(1):65–80. doi:10.1111/j.1365-2958.2004.04100.x

    Article  CAS  Google Scholar 

  • Dutheil J, Saenkham P, Sakr S, Leplat C, Ortega-Ramos M, Bottin H, Cournac L, Cassier-Chauvat C, Chauvat F (2012) The AbrB2 autorepressor, expressed from an atypical promoter, represses the hydrogenase operon to regulate hydrogen production in Synechocystis strain PCC6803. J Bacteriol 194(19):5423–5433. doi:10.1128/JB.00543-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M (2016) In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59(7):1340–1349. doi:10.1007/s00125-016-3959-7

    Article  CAS  PubMed  Google Scholar 

  • Ferino F, Chauvat F (1989) A promoter-probe vector-host system for the cyanobacterium, Synechocystis PCC6803. Gene 84(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp 6803. FEMS Microbiol Lett 13:367–370

    Article  CAS  Google Scholar 

  • Hamilton TL, Bryant DA, Macalady JL (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environmental Microbiol 18(2):325–340. doi:10.1111/1462-2920.13118

    Article  CAS  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage. Curr Opin Biotech 21(3):365–371. doi:10.1016/j.copbio.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  • Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH (2016) Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 33(2):348–364. doi:10.1039/c5np00097a

    Article  CAS  PubMed  Google Scholar 

  • Lehmann M, Wober G (1977) Preparation of [U-14C]-labelled glycogen, maltosaccharides, maltose, and D-glucose by photoassimilation of 14CO2 in Anacystis nidulans and selective enzymic degradation. Carbohydr Res 56(2):357–362

    Article  CAS  PubMed  Google Scholar 

  • Loser R, Pietzsch J (2015) Cysteine cathepsins: their role in tumor progression and recent trends in the development of imaging probes. Front Chem 3:37. doi:10.3389/Fchem.2015.00037

    Article  PubMed  PubMed Central  Google Scholar 

  • Marteyn B, Sakr S, Farci S, Bedhomme M, Chardonnet S, Decottignies P, Lemaire SD, Cassier-Chauvat C, Chauvat F (2013) The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme. J Bacteriol 195(18):4138–4145. doi:10.1128/JB.00272-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine drugs 12(2):1066–1101. doi:10.3390/md12021066

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Marine drugs 14(5). doi:10.3390/Md14050097

  • Mermet-Bouvier P, Chauvat F (1994) A conditional expression vector for the cyanobacteria Synechocystis sp. strains PCC6803 and PCC6714 or Synechococcus sp. strains PCC7942 and PCC6301. Curr Microbiol 28(3):145–148. doi:10.1007/BF01571055

  • Mermet-Bouvier P, Cassier-Chauvat C, Marraccini P, Chauvat F (1993) Transfer and replication of RSF1010-derived plasmids in several cyanobacteria of the general Synechocystis and Synechococcus. Curr Microbiol 27(6):323–327. doi:10.1007/Bf01568955

    Article  CAS  Google Scholar 

  • Micallef ML, D'Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC (2015) Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genom 21:1–12. doi:10.1016/j.margen.2014.11.009

    Article  Google Scholar 

  • Miles CO, Sandvik M, Nonga HE, Ballot A, Wilkins AL, Rise F, Jaabaek JAH, Loader JI (2016) Conjugation of microcystins with thiols is reversible: base-catalyzed deconjugation for chemical analysis. Chem Res Toxicol 29(5):860–870. doi:10.1021/acs.chemrestox.6b00028

    Article  CAS  PubMed  Google Scholar 

  • Moss NA, Bertin MJ, Kleigrewe K, Leao TF, Gerwick L, Gerwick WH (2016) Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery. J Ind Microbiol Biot 43(2–3):313–324. doi:10.1007/s10295-015-1705-7

    Article  CAS  Google Scholar 

  • Narainsamy K, Marteyn B, Sakr S, Cassier-Chauvat C, Chauvat F (2013) Genomics of the pleïotropic glutathione system in cyanobacteria. In: Chauvat F, Cassier-Chauvat C (eds) Genomics of cyanobacteria. Advances in Botanicol research, vol 65. Academic Press, Elsevier, Amsterdam, pp 157–188

    Chapter  Google Scholar 

  • Narainsamy K, Farci S, Braun E, Junot C, Cassier-Chauvat C, Chauvat F (2016) Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Molecular Microbiol 100(1):15–24. doi:10.1111/mmi.13296

    Article  CAS  Google Scholar 

  • Pelroy RA, Kirk MR, Bassham JA (1976) Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714. J Bacteriol 128(2):623–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32(3):478–503. doi:10.1039/c4np00104d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotech 33:8–14. doi:10.1016/j.copbio.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  • Tovey KC, Spiller GH, Oldham KG, Lucas N, Carr NG (1974) A new method for the preparation of uniformly 14C-labelled compounds by using Anacystis nidulans. The Biochemical journal 142(1):47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videau P, Wells KN, Singh AJ, Gerwick WH, Philmus B (2016) Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: production of lyngbyatoxin a. ACS Synth Biol 5(9):978–988. doi:10.1021/acssynbio.6b00038

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19(4):162–173. doi:10.1016/j.tim.2010.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Jean Labarre, Gilles Lagniel, Denis Servent, Romulo Araoz, and Nicolas Gilles for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Chauvat.

Ethics declarations

Funding

This study was funded by the CEA.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassier-Chauvat, C., Dive, V. & Chauvat, F. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery. Appl Microbiol Biotechnol 101, 1359–1364 (2017). https://doi.org/10.1007/s00253-017-8105-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8105-z

Keywords

Navigation