Skip to main content

Advertisement

Log in

C2-ceramide enhances sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and Erk signaling pathways in HCC cells

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sorafenib as an effective multikinase inhibitor has been approved for the clinical treatment against advanced hepatocellular carcinoma (HCC). HCC treatment requires usually combined therapy because of its complex pathogenesis. Ceramide has been confirmed to induce remarkable apoptosis in human tumor cells and has attracted increasing attention in investigations on combination therapy. In this paper, the anti-HCC effect of sorafenib combined with C2-ceramide was investigated on cell vitality, apoptosis, and migration, and the underlying mechanism was examined using flow cytometry and western blot. Bel7402 cells coincubated with sorafenib and C2-ceramide exhibited lower cell vitality and more irregular cellular morphology and cell cycle arrest. Sorafenib plus C2-ceramide stimulated significantly the production of reactive oxygen species (ROS) and mitochondrial depolarization, which promoted caspases-dependent cell apoptosis as illustrated by related protein expression including caspase 3, caspase 9, Bax, Bcl-2, and cytochrome c. Combination treatment of sorafenib and C2-ceramide inhibited obviously cell growth and proliferation via PI3K/AKT/mTOR and Erk signaling pathways. Furthermore, the combination treatment was proved to inhibit cell migration and epithelial-mesenchymal transition (EMT). These findings indicated that the combination of C2-ceramide and sorafenib provided synergistic inhibitory effects on HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. doi:10.1146/annurev-cellbio-100913-013226

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125(12):2863–2870. doi:10.1002/ijc.24748

  • Berasain C, Nicou A, Garcia-Irigoyen O, Latasa MU, Urtasun R, Elizalde M, Salis F, Perugorria MJ, Prieto J, Recio JA, Corrales FJ, Avila MA (2012) Epidermal growth factor receptor signaling in hepatocellular carcinoma: inflammatory activation and a new intracellular regulatory mechanism. Dig Dis 30(5):524–531. doi:10.1159/000341705

    Article  PubMed  Google Scholar 

  • Blazquez C, Salazar M, Carracedo A, Lorente M, Egia A, Gonzalez-Feria L, Haro A, Velasco G, Guzman M (2008) Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res 68(6):1945–1952. doi:10.1158/0008-5472.CAN-07-5176

    Article  CAS  PubMed  Google Scholar 

  • Bodzin AS, Busuttil RW (2015) Hepatocellular carcinoma: advances in diagnosis, management, and long term outcome. World J Hepatol 7(9):1157–1167. doi:10.4254/wjh.v7.i9.1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T, Nordenskjold B, Stal O (2013) Activation of AKT, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 137(2):397–406. doi:10.1007/s10549-012-2376-y

    Article  CAS  PubMed  Google Scholar 

  • Bruix J, Gores GJ, Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63(5):844–855. doi:10.1136/gutjnl-2013-306627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M (2011) Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140(3):1071–1083. doi:10.1053/j.gastro.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  • Casar B, Arozarena I, Sanz-Moreno V, Pinto A, Agudo-Ibanez L, Marais R, Lewis RE, Berciano MT, Crespo P (2009) Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 29(5):1338–1353. doi:10.1128/MCB.01359-08

    Article  CAS  PubMed  Google Scholar 

  • Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 11(15):2843–2855. doi:10.4161/cc.21193

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Lv J, Ye XL, Sun MY, Xu Q, Liu CH, Min LH, Li HP, Liu P, Ding X (2011) Sorafenib inhibits transforming growth factor beta1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology 53(5):1708–1718. doi:10.1002/hep.24254

    Article  CAS  PubMed  Google Scholar 

  • Cheng AL, Kang YK, He AR, Lim HY, Ryoo BY, Hung CH, Sheen IS, Izumi N, Austin T, Wang Q, Greenberg J, Shiratori S, Beckman RA, Kudo M, Investigators’ Study G (2015) Safety and efficacy of tigatuzumab plus sorafenib as first-line therapy in subjects with advanced hepatocellular carcinoma: a phase 2 randomized study. J Hepatol 63(4):896–904. doi:10.1016/j.jhep.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  • Cheng JY, Wang SH, Lin J, Tsai YC, Yu J, Wu JC, Hung JT, Lin JJ, Wu YY, Yeh KT, Yu AL (2014) Globo-H ceramide shed from cancer cells triggers translin-associated factor X-dependent angiogenesis. Cancer Res 74(23):6856–6866. doi:10.1158/0008-5472.CAN-14-1651

    Article  CAS  PubMed  Google Scholar 

  • Chu P, Han G, Ahsan A, Sun Z, Liu S, Zhang Z, Sun B, Song Y, Lin Y, Peng J, Tang Z (2016) Phosphocreatine protects endothelial cells from methylglyoxal induced oxidative stress and apoptosis via the regulation of PI3K/AKT/eNOS and NF-B pathway. Vasc Pharmacol. doi:10.1016/j.vph.2016.08.012

    Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63. doi:10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  • Debret R, Brassart-Pasco S, Lorin J, Martoriati A, Deshorgue A, Maquart FX, Hornebeck W, Rahman I, Antonicelli F (2008) Ceramide inhibition of MMP-2 expression and human cancer bronchial cell invasiveness involve decreased histone acetylation. Biochim Biophys Acta 1783(10):1718–1727. doi:10.1016/j.bbamcr.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. doi:10.1038/nrc745

    Article  CAS  PubMed  Google Scholar 

  • El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127. doi:10.1056/NEJMra1001683

    Article  CAS  PubMed  Google Scholar 

  • Fecteau JF, Bharati IS, O’Hayre M, Handel TM, Kipps TJ, Messmer D (2012) Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (mcl-1). Mol Med 18:19–28. doi:10.2119/molmed.2011.00164

    Article  CAS  PubMed  Google Scholar 

  • Feng LX, Li M, Liu YJ, Yang SM, Zhang N (2014) Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci 15(3):4201–4220. doi:10.3390/ijms15034201

    Article  PubMed  PubMed Central  Google Scholar 

  • Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379(9822):1245–1255. doi:10.1016/S0140-6736(11)61347-0

    Article  PubMed  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20(5):689–711. doi:10.1007/s10495-015-1109-1

    Article  CAS  PubMed  Google Scholar 

  • Gao JJ, Shi ZY, Xia JF, Inagaki Y, Tang W (2015) Sorafenib-based combined molecule targeting in treatment of hepatocellular carcinoma. World J Gastroenterol 21(42):12059–12070. doi:10.3748/wjg.v21.i42.12059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier A, Ho M (2013) Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatol Res 43(2):147–154. doi:10.1111/j.1872-034X.2012.01113.x

    Article  CAS  PubMed  Google Scholar 

  • Ha TY, Hwang S, Moon KM, Won YJ, Song GW, Kim N, Tak E, Ryoo BY, Hong HN (2015) Sorafenib inhibits migration and invasion of hepatocellular carcinoma cells through suppression of matrix metalloproteinase expression. Anticancer Res 35(4):1967–1976

    CAS  PubMed  Google Scholar 

  • Huang S, Sinicrope FA (2010) Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther 9(3):742–750. doi:10.1158/1535-7163.MCT-09-1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean GW, Mani RM, Jaffry A, Khan SA (2016) Toxic effects of sorafenib in patients with differentiated thyroid carcinoma compared with other cancers. JAMA Oncol 2(4):529–534. doi:10.1001/jamaoncol.2015.5927

    Article  PubMed  Google Scholar 

  • Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L (2016) Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine 23(3):243–252. doi:10.1016/j.phymed.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  • Kim JU, Shariff MI, Crossey MM, Gomez-Romero M, Holmes E, Cox IJ, Fye HK, Njie R, Taylor-Robinson SD (2016) Hepatocellular carcinoma: review of disease and tumor biomarkers. World J Hepatol 8(10):471–484. doi:10.4254/wjh.v8.i10.471

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitatani K, Usui T, Sriraman SK, Toyoshima M, Ishibashi M, Shigeta S, Nagase S, Sakamoto M, Ogiso H, Okazaki T, Hannun YA, Torchilin VP, Yaegashi N (2015) Ceramide limits phosphatidylinositol-3-kinase C2beta-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. doi:10.1038/onc.2015.330

    PubMed Central  Google Scholar 

  • Korzeniewska-Dyl I (2008) Caspases—a new target in inflammation and cancer therapy? Pol Merkur Lekarski 24(139):5–7

    PubMed  Google Scholar 

  • Lee YJ, Amoscato AA (2004) TRAIL and ceramide. Vitam Horm 67:229–255. doi:10.1016/S0083-6729(04)67013-0

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhang N (2015) Ceramide: therapeutic potential in combination therapy for cancer treatment. Curr Drug Metab 17(1):37–51

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen Y, Wan J, Liu X, Yu C, Li W (2014a) ABT-263 enhances sorafenib-induced apoptosis associated with AKT activity and the expression of Bax and p21(CIP1/WAF1) in human cancer cells. Br J Pharmacol 171(13):3182–3195. doi:10.1111/bph.12659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang S, Wang Z, Qian X, Fan J, Zeng X, Sun Y, Song P, Feng M, Ju D (2014b) Cationic poly (amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells. Nanotechnology 25(36):365101. doi:10.1088/0957-4484/25/36/365101

    Article  PubMed  Google Scholar 

  • Li Z, Wang JW, Wang WZ, Zhi XF, Zhang Q, Li BW, Wang LJ, Xie KL, Tao JQ, Tang J, Wei S, Zhu Y, Xu H, Zhang DC, Yang L, Xu ZK (2016) Natriuretic peptide receptor a inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.08.019

    Google Scholar 

  • Liu M, Qi Z, Liu B, Ren Y, Li H, Yang G, Zhang Q (2015) RY-2f, an isoflavone analog, overcomes cisplatin resistance to inhibit ovarian tumorigenesis via targeting the PI3K/AKT/mTOR signaling pathway. Oncotarget 6(28):25281–25294. doi:10.18632/oncotarget.4634

    Article  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312–1327. doi:10.1002/hep.22506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, Group SIS (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. doi:10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  • MacKichan ML, DeFranco AL (1999) Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274(3):1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Morad SA, Ryan TE, Neufer PD, Zeczycki TN, Davis TS, MacDougall MR, Fox TE, Tan SF, Feith DJ, Loughran TP Jr, Kester M, Claxton DF, Barth BM, Deering TG, Cabot MC (2016) Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. J Lipid Res. doi:10.1194/jlr.M067389

    PubMed  Google Scholar 

  • Nagai T, Arao T, Furuta K, Sakai K, Kudo K, Kaneda H, Tamura D, Aomatsu K, Kimura H, Fujita Y, Matsumoto K, Saijo N, Kudo M, Nishio K (2011) Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther 10(1):169–177. doi:10.1158/1535-7163.MCT-10-0544

    Article  CAS  PubMed  Google Scholar 

  • Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, Afaq F (2015) Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget 6(29):28296–28311. doi:10.18632/oncotarget.5064

    Article  PubMed  PubMed Central  Google Scholar 

  • Park GB, Choi Y, Kim YS, Lee HK, Kim D, Hur DY (2014) ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol 44(3):977–985. doi:10.3892/ijo.2014.2252

    CAS  PubMed  Google Scholar 

  • Pastore D, Della-Morte D, Coppola A, Capuani B, Lombardo MF, Pacifici F, Ferrelli F, Arriga R, Mammi C, Federici M, Bellia A, Di Daniele N, Tesauro M, Donadel G, Noto D, Sbraccia P, Sconocchia G, Lauro D (2015) SGK-1 protects kidney cells against apoptosis induced by ceramide and TNF-alpha. Cell Death Dis 6:e1890. doi:10.1038/cddis.2015.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrache I, Berdyshev EV (2016) Ceramide signaling and metabolism in pathophysiological states of the lung. Annu Rev Physiol 78:463–480. doi:10.1146/annurev-physiol-021115-105221

    Article  CAS  PubMed  Google Scholar 

  • Pfeilschifter J, Huwiler A (1998) Identification of ceramide targets in interleukin-1 and tumor necrosis factor-alpha signaling in mesangial cells. Kidney Int Suppl 67:S34–S39

    Article  CAS  PubMed  Google Scholar 

  • Pignochino Y, Dell’Aglio C, Basirico M, Capozzi F, Soster M, Marchio S, Bruno S, Gammaitoni L, Sangiolo D, Torchiaro E, D’Ambrosio L, Fagioli F, Ferrari S, Alberghini M, Picci P, Aglietta M, Grignani G (2013) The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 19(8):2117–2131. doi:10.1158/1078-0432.CCR-12-2293

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Moreno-Sanchez R (2010) Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Asp Med 31(1):29–59. doi:10.1016/j.mam.2009.12.006

    Article  CAS  Google Scholar 

  • Sriraman SK, Pan J, Sarisozen C, Luther E, Torchilin V (2016) Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol Pharm. doi:10.1021/acs.molpharmaceut.5b00663

  • Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14:48. doi:10.1186/s12943-015-0321-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S (2014) ROS-dependent prostate apoptosis response-4 (par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 4:763–776. doi:10.1016/j.fob.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomonari T, Takeishi S, Taniguchi T, Tanaka T, Tanaka H, Fujimoto S, Kimura T, Okamoto K, Miyamoto H, Muguruma N, Takayama T (2016) MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma. Oncotarget 7(6):7207–7215. doi:10.18632/oncotarget.6889

    PubMed  PubMed Central  Google Scholar 

  • Tran MA, Smith CD, Kester M, Robertson GP (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14(11):3571–3581. doi:10.1158/1078-0432.CCR-07-4881

    Article  CAS  PubMed  Google Scholar 

  • Voelkel-Johnson C, Hannun YA, El-Zawahry A (2005) Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein. Mol Cancer Ther 4(9):1320–1327. doi:10.1158/1535-7163.MCT-05-0086

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Yao J, Li Z, Zu G, Feng D, Shan W, Li Y, Hu Y, Zhao Y, Tian X (2016) miR-34a-5p inhibition alleviates intestinal ischemia/reperfusion-induced ROS accumulation and apoptosis via activation of SIRT1 signaling. Antioxid Redox Sign. doi:10.1089/ars.2015.6492

    Google Scholar 

  • Wang Z, Shi X, Li Y, Zeng X, Fan J, Sun Y, Xian Z, Zhang G, Wang S, Hu H, Ju D (2014) Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells. A Appl Microbiol Biotechnol 98(6):2485–2494. doi:10.1007/s00253-013-5118-0

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844. doi:10.1038/nrd2130

    Article  CAS  PubMed  Google Scholar 

  • Woo HY, Heo J (2012) Sorafenib in liver cancer. Expert Opin Pharmacother 13(7):1059–1067. doi:10.1517/14656566.2012.679930

    Article  CAS  PubMed  Google Scholar 

  • Yabu T, Shiba H, Shibasaki Y, Nakanishi T, Imamura S, Touhata K, Yamashita M (2015) Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling. Cell Death Differ 22(2):258–273. doi:10.1038/cdd.2014.128

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Li Y, Fan J, Zhao H, Xian Z, Sun Y, Wang Z, Wang S, Zhang G, Ju D (2013) Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin’s lymphoma cells. Cell Death Dis 4:e840. doi:10.1038/cddis.2013.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81572979); National Key Basic Research Program of China (2015CB931800); and School of Pharmacy, Fudan University and The Open Project Program of Key Lab of Smart Drug Delivery (Fudan University), Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research performed did not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Wang, Q., Feng, M. et al. C2-ceramide enhances sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and Erk signaling pathways in HCC cells. Appl Microbiol Biotechnol 101, 1535–1546 (2017). https://doi.org/10.1007/s00253-016-7930-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7930-9

Keywords

Navigation