Skip to main content
Log in

Arylmalonate decarboxylase—a highly selective bacterial biocatalyst with unknown function

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial arylmalonate decarboxylase (AMDase) shows high enantioselectivity and a broad substrate spectrum in the asymmetric synthesis of optically pure arylaliphatic carboxylic acids. The determination of the structure of AMDase has greatly extended the understanding of the catalytic mechanism of this unique cofactor-free decarboxylase and allowed the generation of tailor-made enzyme variants with improved catalytic properties. Despite this increase in knowledge and applicability, the natural role of the enzyme remains unknown. This mini-review summarizes the recent findings on the molecular mechanism and the synthetic application of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleby TC, Kinsland C, Begley TP, Ealick SE (2010) The crystal structure and mechanism of orotidine 5 -monophosphate decarboxylase. Proc Natl Acad Sci USA 97(5):2005–2010

  • Bornscheuer U, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  CAS  PubMed  Google Scholar 

  • Brück T, Kourist R, Loll B (2014) Production of macrocyclic sesqui-and diterpenes in heterologous microbial hosts: a systems approach to harness Nature’s molecular diversity. ChemCatChem 6(5):1142–1165

    Google Scholar 

  • Busch F, Hülsemann N, Enoki J, Miyamoto K, Bocola M, Kourist R (2016) Semiempirical QM/MM calculations reveal a step-wise proton transfer and an unusual thiolate pocket in the mechanism of the racemizing mutant G74C of arylmalonate decarboxylase. Cat Sci Technol 6(13):4937–4944

  • Engström K, Nyhlen J, Sandström AG, Backväll JE (2010) Directed Evolution of an Enantioselective Lipase with Broad Substrate Scope for Hydrolysis of alpha-Substituted Esters. J Am Chem Soc 132(20):7038–7042

  • Fisch F, Fleites CM, Delenne M, Baudendistel N, Hauer B, Turkenburg JP, Hart S, Bruce NC, Grogan G (2010) A covalent succinylcysteine-like intermediate in the enzyme-catalyzed transformation of maleate to fumarate by maleate isomerase. J Am Chem Soc 132(33):11455–11457

    Article  CAS  PubMed  Google Scholar 

  • Frank A, Eborall W, Hyde R, Hart S, Turkenburg JP, Grogan G (2012) Mutational analysis of phenolic acid decarboxylase from Bacillus subtilis (BsPAD), which converts bio-derived phenolic acids to styrene derivatives. Cat Sci Technol 2(8):1568–1574

    Article  CAS  Google Scholar 

  • Gaßmeyer SK, Yoshikawa H, Enoki J, Hülsemann N, Stoll R, Miyamoto K, Kourist R (2015) STD-NMR-based protein engineering of the unique arylpropionate-racemase AMDase G74C. ChemBioChem 16(13):1943–1949

  • Gaßmeyer S, Wetzig J, Mügge C, Assmann M, Enoki J, Hilterhaus L, Zuhse R, Miyamoto K, Liese A, Kourist R (2016) Arylmalonate decarboxylase-catalyzed asymmetric synthesis of both enantiomers of optically pure flurbiprofen. ChemCatChem 8:916–921

    Article  Google Scholar 

  • Giacomini D, Galletti P, Quintavalla A, Gucciardo G, Paradisi F (2007) Highly efficient asymmetric reduction of arylpropionic aldehydes by Horse Liver Alcohol Dehydrogenase through dynamic kinetic resolution. Chem Commun (39):4038–4040

  • Glueck SM, Gümüs S, Fabian WM, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39(1):313–328

    Article  CAS  PubMed  Google Scholar 

  • Ijima, Y., K. Matoishi, Y. Terao, N. Doi, H. Yanagawa and H. Ohta (2005). Inversion of enantioselectivity of asymmetric biocatalytic decarboxylation by site-directed mutagenesis based on the reaction mechanism. Chem Commun 877–879

  • Kalb D, Gressler J, Hoffmeister D (2015) Active-site engineering expands the substrate profile of the basidiomycete L-tryptophan decarboxylase CsTDC. ChemBioChem 17:132–136

  • Korth M (2010) Third-generation hydrogen-bonding corrections for semiempirical QM methods and force fields. J Chem Th Comp 6(12):3808–3816

    Article  CAS  Google Scholar 

  • Könst P, Merkens H, Kara S, Kochius S, Vogel A, Zuhse R, Holtmann D, Arends IW, Hollmann F (2012) Enantioselective oxidation of aldehydes catalyzed by alcohol dehydrogenase. Angew Chem Int Ed 51(39):9914–9917

  • Kourist R, Miyamoto K (2011) Protein engineering of arylmalonate decarboxylase G74C, an artificial racemase. Biotechnol Intern 23:6–9

    Google Scholar 

  • Kourist R, Miyauchi Y, Uemura D, Miyamoto K (2011) Engineering the promiscuous racemase activity of arylmalonate decarboxylase. Chem Eur J 17:557–563

    Article  CAS  PubMed  Google Scholar 

  • Wong LS, Okrasa K, Micklefield J (2010) Site-selective immobilisation of functional enzymes on to polystyrene nanoparticles. Org Biomol Chem 8(4):782–787

  • Kourist R, Guterl J-K, Miyamoto K, Sieber V (2014) Enzymatic decarboxylation—an emerging reaction for chemicals production from renewable resources. ChemCatChem 6(3):689–701

    Article  CAS  Google Scholar 

  • Kuettner EB, Keim A, Kircher M, Rosmus S, Strater N (2008) Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica. J Mol Biol 377(2):386–394

  • Lewin R, Goodall M, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J (2015) Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates. Chem Eur J 21(17):6557–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind ME, Himo F (2014) Theoretical study of reaction mechanism and stereoselectivity of arylmalonate decarboxylase. ACS Catal 4(11):4153–4160

    Article  CAS  Google Scholar 

  • Maimanakos J, Chow J, Gaßmeyer S, Kourist S, Streit WR (2016) Sequence-based screening for rare enzymes: new insights into the world of AMDases. Front Microbiol. doi:10.3389/fmicb.2016.01332

  • Matoishi K, Ueda M, Miyamoto K, Ohta H (2004) Mechanism of asymmetric decarboxylation of α-aryl-α-methylmalonate catalyzed by arylmalonate decarboxylase originated from Alcaligenes bronchisepticus. J Mol Catal B Enzym 27(4):161–168

    Article  CAS  Google Scholar 

  • May M, Mehboob S, Mulhearn DC, Wang Z, Yu H, Thatcher GRJ, Santarsiero BD, Johnson ME, Mesecar AD (2007) Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J Mol Biol 371(5):1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto K, Ohta H (1990) Enzyme-mediated asymmetric decarboxylation of disubstituted malonic acids. J Am Chem Soc 112:4077–4078

    Article  CAS  Google Scholar 

  • Miyamoto K, Ohta H (1992a) Cloning and heterologous expression of a novel arylmalonate decarboxylase gene from Alcaligenes bronchisepticus KU 1201. Appl Microbiol Biotechnol 38(2):234–238

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Ohta H (1992b) Purification and properties of a novel arylmalonate decarboxylase from Alcaligenes bronchosepticus KU-1201. Eur J Biochem 210(2):475–481

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Tsuchiya S, Ohta H (1992) Stereochemistry of enzyme-catalyzed decarboxylation of alpha-methyl-alpha-phenylmalonic acid. J Am Chem Soc 2:6256–6257

    Article  Google Scholar 

  • Miyamoto K, Tsutsumi T, Terao Y, Ohta H (2007a) Stereochemistry of decarboxylation of arylmalonate catalyzed by mutant enzymes. Chem Lett 36(5):656–657

    Article  CAS  Google Scholar 

  • Miyamoto K, Yatake Y, Tamura K, Terao Y, Ohta H (2007b) Purification and characterization of arylmalonate decarboxylase from Achromobacter sp KU1311. J Biosc Bioeng 104(4):263–267

    Article  CAS  Google Scholar 

  • Miyauchi Y, Kourist R, Uemura D, Miyamoto K (2011) Dramatically improved catalytic activity of an artificial (S)-selective arylmalonate decarboxylase by structure-guided directed evolution. Chem Commun 47:7503–7505

    Article  CAS  Google Scholar 

  • Obata R, Nakasako M (2010) Structural basis for inverting the enantioselectivity of arylmalonate decarboxylase revealed by the structural analysis of the Gly74Cys/Cys188Ser mutant in the liganded form. Biochemistry 49:1963–1969

    Article  CAS  PubMed  Google Scholar 

  • Okrasa K, Levy C, Hauer B, Baudendistel N, Leys D, Micklefield J (2008) Structure and mechanism of an unusual malonate decarboxylase and related racemases. Chem Eur J 14(22):6609–6613

    Article  CAS  PubMed  Google Scholar 

  • Okrasa K, Levy C, Wilding M, Goodall M, Baudendistel N, Hauer B, Leys D, Micklefield J (2009) Structure-guided directed evolution of alkenyl and arylmalonate decarboxylases. Angew Chem Int Ed 48(41):7691–7694

  • Payne KA, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Beveridge R (2015) New cofactor supports [agr],[bgr]-unsaturated acid decarboxylation via 1, 3-dipolar cycloaddition. Nature 522(7557):497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig E, Garcia-Viloca M, González-Lafont À, Lluch JM (2006) On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic. J Phys Chem A 110(2):717–725

    Article  CAS  PubMed  Google Scholar 

  • Puig E, Mixcoha E, Garcia-Viloca M, Gonzalez-Lafont A, Lluch JM (2009) How the substrate D-glutamate drives the catalytic action of Bacillus subtilis glutamate racemase. J Am Chem Soc 131(10):3509–3521

    Article  CAS  PubMed  Google Scholar 

  • Sandström AG, Wikmark Y, Engström K, Nyhlén J, J-e B (2012) Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci U S A 109:78–83

  • Steenkamp L, Brady D (2003) Screening of commercial enzymes for the enantio selective hydrolysis of R, S-naproxen ester. Enzym Microb Technol 32(3–4):472–477

  • Steenkamp L, Brady D (2008) Optimisation of stabilised Carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester. Process Biochem 43:1419–1426

  • Strübing D, Krumlinde P, Piera J, Bäckvall JE (2007) Dynamic kinetic resolution of primary alcohols with an unfunctionalized stereogenic center in the beta-position. Adv Synth Catal 349:1577–1581

  • Tamura K, Terao Y, Miyamoto K, Ohta H (2008) Asymmetric decarboxylation of alpha-hydroxy- and alpha-amino-alpha-phenylmalonate catalyzed by arylmalonate decarboxylase from Alcaligenes bronchisepticus. Biocatal Biotransform 26(4):253–257

    Article  CAS  Google Scholar 

  • Terao Y, Ijima Y, Kakidani H, Ohta H (2003) Enzymatic synthesis of (R)-flurbiprofen. Bull Chem Soc Japan 76(12):2395–2397

  • Terao Y, Miyamoto K, Ohta H (2006a) Improvement of the activity of arylmalonate decarboxylase by random mutagenesis. Appl Microbiol Biotechnol 73(3):647–653

    Article  CAS  PubMed  Google Scholar 

  • Terao Y, Miyamoto K, Ohta H (2006b) Introduction of single mutation changes arylmalonate decarboxylase to racemase. Chem Commun 34:3600–3602

    Article  Google Scholar 

  • Um PJ, Drueckhammer DG (1998) Dynamic enzymatic resolution of thioesters. J Am Chem Soc 120(23):5605–5610

  • Vardi-Kilshtain A, Doron D, Major DT (2013) Quantum and classical simulations of orotidine monophosphate decarboxylase: support for a direct decarboxylation mechanism. Biochemistry 52(25):4382–4390

    Article  CAS  PubMed  Google Scholar 

  • Yatake Y, Miyamoto K, Ohta H (2008) Screening, cloning, expression, and purification of an acidic arylmalonate decarboxylase from Enterobacter cloacae KU1313. Appl Microbiol Biotechnol 78(5):793–799

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Enoki J, Hemmi R, Kourist R, Kawakami N, Miyamoto K (2015a) Draft genome sequence of Bordetella bronchiseptica KU1201, the first isolation source of arylmalonate decarboxylase. Genome Ann 3(3):e00373–e00315

    Google Scholar 

  • Yoshida S, Enoki J, Kourist R, Miyamoto K (2015b) Engineered hydrophobic pocket of (S)-selective arylmalonate decarboxylase variant by simultaneous saturation mutagenesis to improve catalytic performance. Biosc Biotechnol Biochem 79:1965–1971

    Article  CAS  Google Scholar 

  • Zachos I, Gaßmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R (2015) Photobiocatalytic decarboxylation for olefin synthesis. Chem Commun 51:1918–1921

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Florian Busch (Ruhr-Universität Bochum, Germany) and Marco Bocola (RWTH Aachen, Germany) for very insightful suggestions regarding the mechanism of AMDase and Janine Maimanakos for discussions of the biological distribution of the enzyme and the phylogenetic analysis of the asp/glu racemase superfamily. The authors thank the North Rhine-Westphalian Ministry for Innovation, Science and Investigation (award number PtJ-TRI/1411ng006) and the German Academic Exchange Service (award number 57154401) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kourist.

Ethics declarations

Funding

This study was funded by the North Rhine-Westphalian Ministry for Innovation, Science and Investigation (award number PtJ-TRI/1411ng006) and the German Academic Exchange Service (award number 57154401).

Conflict of interest

Robert Kourist declares that he has no conflict of interest.

Kenji Miyamoto declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, K., Kourist, R. Arylmalonate decarboxylase—a highly selective bacterial biocatalyst with unknown function. Appl Microbiol Biotechnol 100, 8621–8631 (2016). https://doi.org/10.1007/s00253-016-7778-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7778-z

Keywords

Navigation