Skip to main content
Log in

Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bothe H, Møller Jensen K, Mergel A, Larsen J, Jørgensen C, Jørgensen L (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biot 59(1):33–39

    Article  CAS  Google Scholar 

  • Chen Y, Dumont MG, Cébron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9(11):2855–2869

    Article  CAS  PubMed  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microb 65(11):5066–5074

    CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos T R Soc B 360(1458):1207–1222

    Article  CAS  Google Scholar 

  • Frederick MA, Roger B, Robert E, David D, Seidman J, John A, Kevin S (1995) Short protocols in molecular biology, 3rd edn. Wiley, New York

    Google Scholar 

  • Goldberg IA, Rokem JS (2013) Biology of methylotrophs. Elsevier

  • Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microbial Ecol 25(1):1–17

    Article  CAS  Google Scholar 

  • Han B, Chen Y, Abell G, Jiang H, Bodrossy L, Zhao J, Murrell JC, Xing XH (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70(2):196–207

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101(2):387–395

    Article  CAS  PubMed  Google Scholar 

  • Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105(4):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679

    Article  CAS  PubMed  Google Scholar 

  • Hesselsoe M, Boysen S, Iversen N, Jørgensen L, Murrell JC, McDonald I, Radajewski S, Thestrup H, Roslev P (2005) Degradation of organic pollutants by methane grown microbial consortia. Biodegradation 16(5):435–448

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P (1989) Genus Hyphomicrobium. In: Staley JM (ed) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp. 1895–1904

    Google Scholar 

  • Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PL (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5(3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8(9):1945–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrsak D, Grbicgalic D (1995) Biodegradation of linear alkylbenzenesulphonates (LAS) by mixed methanotrophic-heterotrophic cultures. J Appl Microbiol 78(5):487–494

    CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Jenkins O, Byrom D, Jones D (1987) Methylophilus: a new genus of methanol-utilizing bacteria. Int J Syst Bacteriol 37(4):446–448

    Article  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288

    Article  CAS  Google Scholar 

  • Jiang H, Gou ZX, Han B, Xing XH (2014) Study on preservation methods of mixed methane-oxidizing bacteria. Microbiology China 41:1463–1469

    Google Scholar 

  • Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H (2016) Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem Eng J 109:112–117

    Article  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9(4):e94641

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Lai Q, Zhang C, Zhao H, Ma K, Zhao X, Chen H, Liu D, Xing XH (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two-or three-stage anaerobic fermentation process. Bioresour Technol 100(12):2889–2895

    Article  CAS  PubMed  Google Scholar 

  • Luo MF, Wu H, Wang L, Xing XH (2007) Study on the structure and function of a stable methane-oxidizing mixed microbial consortium. Acta Microbiol Sin 47(1):103–109

    CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59(3):695–700

    CAS  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1(6):480–491

    Article  CAS  PubMed  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour Technol 107:385–392

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Singh R, Upadhyay S, Dubey SK (2010) Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol. Bioresour Technol 101(21):8119–8126

    Article  CAS  PubMed  Google Scholar 

  • Stępniewska Z, Pytlak A, Kuźniar A (2013) Methanotrophic activity in Carboniferous coalbed rocks. Int J Coal Geol 106:1–10

    Article  Google Scholar 

  • Strong P, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58(3):682–692

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Doronina N, Khmelenina V (2005) Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Appl Biochem Micro+ 41(5):433–441

    Article  CAS  Google Scholar 

  • van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biot 87(6):2355–2363

    Article  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Micr 61(10):2456–2463

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weon HY, Song MH, Son JA, Kim BY, Kwon SW, Go SJ, Stackebrandt E (2007) Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Micr 57(7):1594–1598

    Article  Google Scholar 

  • Xing XH, Wu H, Luo MF, Wang BP (2006) Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem Eng J 31:113–117

    Article  CAS  Google Scholar 

  • Yoon KS, Tsukada N, Sakai Y, Ishii M, Igarashi Y, Nishihara H (2008) Isolation and characterization of a new facultatively autotrophic hydrogen-oxidizing Betaproteobacterium, Hydrogenophaga sp. AH-24. FEMS Microbiol Lett 278(1):94–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Yin Chen for providing helpful comments for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Xing.

Ethics declarations

Funding

This study was funded by the National Science and Technology Support Program (2012BAJ21B01–03).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Duan, C., Luo, M. et al. Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine. Appl Microbiol Biotechnol 100, 10331–10341 (2016). https://doi.org/10.1007/s00253-016-7738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7738-7

Keywords

Navigation