Skip to main content
Log in

Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biochar and compost are seen as two attractive waste management options and are used for soil amendment and pollution remediation. The interaction between biochar and composting may improve the potential benefits of biochar and compost. We investigated soil physicochemical properties, bacterial community, bacterial 16S rRNA, and functional marker genes of nitrogen cycling of the soil remedied with nothing (S), compost (SC), biochar (SB), a mixture of compost and biochar (SBC), composted biochar (SBced), and a composted mixture of biochar and biomass (SBCing). The results were that all amendments (1) increased the bacterial community richness (except SB) and SBCing showed the greatest efficiency; (2) increased the bacterial community diversity (SBCing > SBC > SC > SBced > SB > S); and (3) changed the gene copy numbers of 16S rRNA, nirK, nirS, and nosZ genes of bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). All amendments (except SB) could increase the gene copy number of 16S rRNA, and SBCing had the greatest efficiency. The changes of soil bacterial community richness and diversity and the gene copy numbers of 16S rRNA, nirK, nirS, nosZ, AOA, and AOB would affect carbon and nitrogen cycling of the ecosystem and also implied that BCing had the greatest efficiency on soil amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An Y-J, Joo Y-H, Hong L-Y, Ryu H-W, Cho K-S (2004) Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl Microbiol Biotechnol 65:611–619. doi:10.1007/s00253-004-1596-4

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. doi:10.1016/j.envpol.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  • Borchard N, Spokas K, Prost K, Siemens J (2014) Greenhouse gas production in mixtures of soil with composted and noncomposted biochars is governed by char-associated organic compounds. J Environ Qual 43:971. doi:10.2134/jeq2013.07.0290

    Article  CAS  PubMed  Google Scholar 

  • Card SM, Quideau SA (2010) Microbial community structure in restored riparian soils of the Canadian prairie pothole region. Soil Biol Biochem 42:1463–1471. doi:10.1016/j.soilbio.2010.05.010

    Article  CAS  Google Scholar 

  • Clemente R, Walker DJ, Pardo T, Martinez-Fernandez D, Bernal MP (2012) The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J Hazard Mater 223–224:63–71. doi:10.1016/j.jhazmat.2012.04.048

    Article  PubMed  Google Scholar 

  • Dai J, Wu H, Zhang C, Zeng G, Liang J, Guo S, Li X, Huang L, Lu L, Yuan Y (2016) Responses of soil microbial biomass and bacterial community structure to closed-off management (an ecological natural restoration measures): a case study of Dongting Lake wetland, middle China. J Biosci Bioeng. doi:10.1016/j.jbiosc.2016.03.001

    PubMed  Google Scholar 

  • Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K (2013) Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10–producing T cells. Cancer Res 73:5905–5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias BO, Silva CA, Higashikawa FS, Roig A, Sanchez-Monedero MA (2010) Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technol 101:1239–1246

    Article  CAS  Google Scholar 

  • Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X (2008) Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J Hazard Mater 160:655–661

    Article  CAS  PubMed  Google Scholar 

  • Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522. doi:10.1016/j.jhazmat.2008.09.072

    Article  CAS  PubMed  Google Scholar 

  • Hale SE, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G (2013) Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ Sci Technol 47:8674–8683. doi:10.1021/es400917g

    CAS  PubMed  Google Scholar 

  • Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674

    Article  CAS  PubMed  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci U S A 105:17842–17847. doi:10.1073/pnas.0808254105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang J, Liu Y, Li X, Zeng G, Bao Z, Zeng X, Chen A, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J Hazard Mater 185:306–314

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Zeng G, Feng C, Hu S, Jiang X, Tang L, Su F, Zhang Y, Zeng W, Liu H (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42(13):4946–4951

    Article  CAS  PubMed  Google Scholar 

  • Jindo K, Sánchez-Monedero MA, Hernández T, García C, Furukawa T, Matsumoto K, Sonoki T, Bastida F (2012) Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci Total Environ 416:476–481

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jimenez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi:10.1016/j.jhazmat.2011.04.025

    Article  CAS  PubMed  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Li Y-L, Wang L, Zhang W-Q, Zhang S-P, Wang H-L, Fu X-H, Le Y-Q (2010) Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan. Ecol Eng 36:1754–1760. doi:10.1016/j.ecoleng.2010.07.029

    Article  Google Scholar 

  • Lu R (1999) Soil agricultural chemical analysis method. China’s agricultural science and technology press, Beijing

    Google Scholar 

  • Lu L, Huggins T, Jin S, Zuo Y, Ren ZJ (2014a) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48:4021–4029. doi:10.1021/es4057906

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zeng G, Fan C, Zhang J, Chen A, Chen M, Jiang M, Yuan Y, Wu H, Lai M, He Y (2014b) Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste. Appl Environ Microbiol 80:3305–3314. doi:10.1128/aem.00223-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie KA, Marhan S, Ditterich F, Schmidt HP, Kandeler E (2015) The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard. Agric Ecosyst Environ 201:58–69. doi:10.1016/j.agee.2014.12.001

    Article  CAS  Google Scholar 

  • Masiello CA, Chen Y, Gao X, Liu S, Cheng HY, Bennett MR, Rudgers JA, Wagner DS, Zygourakis K, Silberg JJ (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ Sci Technol 47:11496–11503. doi:10.1021/es401458s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung J-W (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574. doi:10.1016/j.jhazmat.2010.09.082

    Article  CAS  PubMed  Google Scholar 

  • Poret-Peterson AT, Ji B, Engelhaupt E, Gulledge J (2007) Soil microbial biomass along a hydrologic gradient in a subsiding coastal bottomland forest: implications for future subsidence and sea-level rise. Soil Biol Biochem 39:641–645. doi:10.1016/j.soilbio.2006.09.016

    Article  CAS  Google Scholar 

  • Prost K, Borchard N, Siemens J, Kautz T, Sequaris JM, Moller A, Amelung W (2013) Biochar affected by composting with farmyard manure. J Environ Qual 42:164–172. doi:10.2134/jeq2012.0064

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H-P, Kammann C, Niggli C, Evangelou MWH, Mackie KA, Abiven S (2014) Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality. Agric Ecosyst Environ 191:117–123

    Article  CAS  Google Scholar 

  • Steiner C, Melear N, Harris K, Das KC (2011) Biochar as bulking agent for poultry litter composting. Carbon Manag 2:227–230

    Article  Google Scholar 

  • Suddick EC, Six J (2013) An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci Total Environ 465:298–307. doi:10.1016/j.scitotenv.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zeng G, Shen G, Li Y, Zhang Y, Huang D (2008) Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42(4):1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465:72–96. doi:10.1016/j.scitotenv.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Shutao W, Jin Z, Tong X (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresource Technol 154:148–154. doi:10.1016/j.biortech.2013.12.022

    Article  Google Scholar 

  • Wright AL, Wang Y, Reddy KR (2008) Loss-on-ignition method to assess soil organic carbon in calcareous everglades wetlands. Commun Soil Sci Plan 39:3074–3083. doi:10.1080/00103620802432931

    Article  CAS  Google Scholar 

  • Wu H, Zeng G, Liang J, Zhang J, Cai Q, Huang L, Li X, Zhu H, Hu C, Shen S (2013) Changes of soil microbial biomass and bacterial community structure in Dongting Lake: impacts of 50,000 dams of Yangtze River. Ecol Eng 57:72–78. doi:10.1016/j.ecoleng.2013.04.038

    Article  Google Scholar 

  • Wu H, Zeng G, Liang J, Guo S, Dai J, Lu L, Wei Z, Xu P, Li F, Yuan Y, He X (2015) Effect of early dry season induced by the three gorges Dam on the soil microbial biomass and bacterial community structure in the Dongting Lake wetland. Ecol Indic 53:129–136. doi:10.1016/j.ecolind.2015.01.041

    Article  CAS  Google Scholar 

  • Wu H, Lai C, Zeng G, Liang J, Chen J, Xu J, Dai J, Li X, Liu J, Chen M, Lu L, Hu L, Wan J (2016) Interaction of composting and biochar and its implication for soil amendment and pollution remediation—a review. Crit Rev Biotechnol (Accepted on Apr 01, 2016)

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. doi:10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  • Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG (2014) Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ Sci Technol 48:9391–9399. doi:10.1021/es5021058

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu Y (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 74:918–925. doi:10.1007/s00253-006-0704-z

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Huang D, Huang G, Hu T, Jiang X, Feng C, Chen Y, Tang L, Liu H (2007) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technol 98:320–326. doi:10.1016/j.biortech.2006.01.001

    Article  CAS  Google Scholar 

  • Zeng G, Chen M, Zeng Z (2013a) Risks of neonicotinoid pesticide. Science 340(6139):1403

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Chen M, Zeng Z (2013b) Shale gas: surface water also at risk. Nature 499:154. doi:10.1038/499154d

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Wu H, Liang J, Guo S, Huang L, Xu P, Liu Y, Yuan Y, He X, He Y (2015) Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv 5:34541–34548. doi:10.1039/c5ra04834f

    Article  CAS  Google Scholar 

  • Zhang Y, Zeng G, Tang L, Huang D, Jiang X, Chen Y (2007) A hydroquinone biosensor based on immobilizing laccase to modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens Bioelectron 22:2121–2126

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Christel W, Bruun S, Jensen LS (2014) The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biol Biochem 74:61–69. doi:10.1016/j.soilbio.2014.02.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Zeng or Jie Liang.

Ethics declarations

Funding

This research was financially supported by the CRSRI Open Research Program (CKWV2015203/KY), the National Natural Science Foundation of China (51521006, 51479072, 51378190, 51509014, 51579094, and 51508177), the New Century Excellent Researcher Award Program from the Ministry of Education of China (NCET-08-0181), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The article is an original paper, is not under consideration by another journal, and has not been published previously. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zeng, G., Liang, J. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl Microbiol Biotechnol 100, 8583–8591 (2016). https://doi.org/10.1007/s00253-016-7614-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7614-5

Keywords

Navigation