Skip to main content
Log in

A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal genomes contain multiple genes encoding AA9 lytic polysaccharide monooxygenases (LPMOs), a recently discovered class of enzymes known to be active on cellulose and expressed when grown on biomass. Because of extensive genetic and biochemical data already available, Aspergillus nidulans offers an excellent model system to study the need for multiple AA9 LPMOs and their activity during oxidative degradation of biomass. We provide the first report on regulation of the entire family of AA9 LPMOs in A. nidulans over a range of polysaccharides including xylan, xyloglucan, pectin, glucan, and cellulose. We have successfully cloned and expressed AN3046, an AA9 LPMO in A. nidulans that is active on cellulose. Additionally, we performed mass spectral analyses that show the enzyme is active on the hemicellulose xyloglucan. The AN3046 LPMO showed synergy with other hydrolases in degrading sorghum stover. Our data showing activity of the overexpressed LPMO on cellulose and xyloglucan provides further evidence for the breadth of substrates acted on by AA9 LPMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agger J, Isaksen T, Varnai A, Vidal-Melgosa S, Willats W, Ludwig R (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111:6287–6292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci U S A 103:11417–11422. doi:10.1073/pnas.0604632103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892. doi:10.1021/ja210657t

    Article  CAS  PubMed  Google Scholar 

  • Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels 8:90. doi:10.1186/s13068-015-0274-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho P, Berrin J-G (2013) Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol 79:488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal AK, Soeno K, Gandla ML, Immerzeel P, Pattathil S, Lucenius J, Serimaa R, Hahn MG, Moritz T, Jönsson LJ, Israelsson-Nordström M, Mellerowicz EJ (2014) Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. Biotechnol Biofuels 7:11. doi:10.1186/1754-6834-7-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busk P, Lange L (2015) Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16:368

    Article  PubMed  PubMed Central  Google Scholar 

  • Camilo CM, Polikarpov I (2014) High-throughput cloning, expression and purification of glycoside hydrolases using ligation-independent cloning (LIC). Protein Express Purif 99:35–42. doi:10.1016/j.pep.2014.03.008

    Article  CAS  Google Scholar 

  • Cannella D, Hsieh CW, Felby C, Jorgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26. doi:10.1186/1754-6834-5-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson JM, Chakravarty A, DeZiel CE, Gross RH (2007) SCOPE: a web server for practical de novo motif discovery. Nucleic Acids Res 35:W259–W264. doi:10.1093/nar/gkm310

    Article  PubMed  PubMed Central  Google Scholar 

  • Coradetti ST, Xiong Y, Glass NL (2013) Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiol Open 2:595–609. doi:10.1002/mbo3.94

    Article  CAS  Google Scholar 

  • Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 13:57. doi:10.1186/1471-2164-13-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289:35929–35938. doi:10.1074/jbc.M114.602227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo Y, Yokoyama M, Morimoto M, Shirai K, Chikamatsu G, Kato N, Tsukagoshi N, Kato M, Kobayashi T (2008) Novel promoter sequence required for inductive expression of the Aspergillus nidulans endoglucanase gene eglA. Biosci Biotechnol Biochem 72:312–320. doi:10.1271/bbb.70278

    Article  CAS  PubMed  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VG (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Mackenzie A, Sorlie M, Rohr A, Helland R, Arvai A (2014a) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111:8446–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Rohr A, Mekasha S, Andersson K, Eijsink V, Vaaje-Kolstad G (2014b) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:101. doi:10.1186/s13068-015-0284-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, Mcneil M, Mort AJ, Grant Reid JS, Seitz HU, Selvendran R, Voragen AJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plantarum 89:1–3

    Article  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115. doi:10.1038/nature04341

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455. doi:10.1104/pp.110.156646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass N, Schmoll M, Cate J, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    Article  CAS  PubMed  Google Scholar 

  • Harris P, Welner D, McFarland K, Re E, Navarro Poulsen J-C, Brown K (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077. doi:10.1021/ja402106e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsworth G, Henrissat B, Davies G, Walton P (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori C, Igarashi K, Katayama A, Samejima M (2011) Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321:14–23

    Article  CAS  PubMed  Google Scholar 

  • Horn S, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaksen T, Westereng B, Aachmann F, Agger J, Kracher D, Kittl R (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadowaki MA, Camilo CM, Muniz AB, Polikarpov I (2015) Functional characterization and low-resolution structure of an endoglucanase Cel45A from the filamentous fungus Neurospora crassa OR74A: thermostable enzyme with high activity toward lichenan and β-glucan. Mol Biotechnol 57:574–588. doi:10.1007/s12033-015-9851-8

    Article  CAS  PubMed  Google Scholar 

  • Komalavilas P, Mort AJ (1989) The acetylation of O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydr Res 189:261–272. doi:10.1016/0008-6215(89)84102-3

    Article  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015. doi:10.1128/AEM.05815-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Beeson W, Phillips C, Marletta M, Cate J (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci U S A 107:616–621. doi:10.1073/pnas.0907549107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961. doi:10.1038/ncomms6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mba Medie F, Davies G, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10:227–234. doi:10.1038/nrmicro2729

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Navarro D, Rosso MN, Haon M, Olive C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho PM, Henrissat B, Berrin JG (2014) Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Biotechnol Biofuels 7:143. doi:10.1186/s13068-014-0143-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  • Phillips C, Beeson W, Cate J, Marletta M (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Quinlan R, Sweeney M, Lo Leggio L, Otten H, Poulsen J-C, Johansen K (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/

  • Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson S, Prade R, Mort A (2012) Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Appl Microbiol Biotechnol 93:2075–2089

    Article  CAS  PubMed  Google Scholar 

  • Redmond JW, Packer NH (1999) The use of solid-phase extraction with graphitised carbon for the fractionation and purification of sugars. Carbohydr Res 319:74–79

    Article  CAS  Google Scholar 

  • Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52. doi:10.1186/1754-6834-5-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segato F, Damasio AR, Goncalves TA, de Lucas RC, Squina FM, Decker SR, Prade RA (2012) High-yield secretion of multiple client proteins in Aspergillus. Enzym Microb Technol 51:100–106. doi:10.1016/j.enzmictec.2012.04.008

    Article  CAS  Google Scholar 

  • Segato F, Damasio AR, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by aspergilli. Microbiol Mol Biol Rev 78:588–613. doi:10.1128/MMBR.00019-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, Ludwig R (2012) Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol 78:6161–6171. doi:10.1128/AEM.01503-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn S, Liu Z, Zhai H, Sorlie M (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Bohle L, Gaseidnes S, Dalhus B, Bjoras M, Mathiesen G (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 416:239–254

    Article  CAS  PubMed  Google Scholar 

  • Van den Brink J, de Vries R (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vu V, Beeson W, Phillips C, Cate J, Marletta M (2014a) Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 136:562–565

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014b) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111:13822–13827. doi:10.1073/pnas.1408090111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink V, Igarashi K (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:e27807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood TM (1988) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160:19–25

    Article  CAS  Google Scholar 

  • Wu X, Mort A (2014) Structure of a rhamnogalacturonan fragment from apple pectin: implications for pectin architecture. Intl J Carbohydr Chem 2014:6. doi:10.1155/2014/347381

    Article  Google Scholar 

  • Wu M, Beckham G, Larsson A, Ishida T, Kim S, Payne C (2013) Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 288:12828–12839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa Y, Endo Y, Li N, Yoshizawa M, Aoyama M, Watanabe A, Kanamaru K, Kato M, Kobayashi T (2013) Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochem Biophys Res Commun 431:777–782. doi:10.1016/j.bbrc.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81:1470–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded from the Stevens Endowed Chair in Agricultural Biotechnology, held by AJM, and the Oklahoma Agricultural Experiment Station. Mass spectrometry analyses were performed in the DNA/Protein Resource Facility at Oklahoma State University, using resources supported by the NSF MRI and EPSCoR programs (MRI/0722494). We gratefully acknowledge the technical assistance offered by Dr. Steven Hartson and Janet Rogers in the DNA/Protein Resource Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Mort.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeeswaran, G., Gainey, L., Prade, R. et al. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan. Appl Microbiol Biotechnol 100, 4535–4547 (2016). https://doi.org/10.1007/s00253-016-7505-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7505-9

Keywords

Navigation