Skip to main content

Advertisement

Log in

N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The methionine aminopeptidase 1b from Plasmodium falciparum (PfMetAP 1b) was cloned, expressed in Escherichia coli and characterized. Surprisingly, and in contrast to other methionine aminopeptidases (MetAPs) that require heavy-metal cofactors such as cobalt, the enzyme is reliably activated by zinc ions. Immobilization of the enzyme is possible by His-tag metal chelation to iminodiacetic acid-agarose and by covalent binding to chloroacetamido-hexyl-agarose. The covalently immobilized enzyme shows long-term stability, allowing a continuous, heterogenous processing of N-terminal methionines, for example, in recombinant proteins. Activation by zinc, instead of cobalt as for other MetAPs, avoids the introduction of heavy metals with toxicological liabilities and oxidative potential into biotechnological processes. The PfMetAP 1b therefore represents a useful tool for the enzymatic, posttranslational processing of recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addlagatta A, Hu X, Liu JO, Matthews BW (2005) Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Biochemistry 44:14741–14749. doi:10.1021/bi051691k

    Article  CAS  PubMed  Google Scholar 

  • Altmeyer M, Amtmann E, Heyl C, Marschner A, Scheidig AJ, Klein CD (2014) Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases. Bioorg Med Chem Lett 24:5310–5314. doi:10.1016/j.bmcl.2014.09.047

    Article  CAS  PubMed  Google Scholar 

  • Alvarado JJ, Nemkal A, Sauder JM, Russell M, Akiyoshi DE, Shi W, Almo SC, Weiss LM (2009) Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470. Mol Biochem Parasitol 168:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci U S A 92:7714–7718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif A, Gardner QA, Rashid N, Akthar M (2015) Production of human interferon alpha-2b in Escherichia coli and removal of N-terminal methionine utilizing archaeal methionine aminopeptidase. Biologia 70:982–987

    Article  CAS  Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ, Treatman C, Wang H (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37:D539–D543. doi:10.1093/nar/gkn814

    Article  CAS  PubMed  Google Scholar 

  • Backer MV, Patel V, Jehning BT, Claffey KP, Backer JM (2006) Surface immobilization of active vascular endothelial growth factor via a cysteine-containing tag. Biomaterials 27:5452–5458. doi:10.1016/j.biomaterials.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  • Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2015) Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 33:435–456. doi:10.1016/j.biotechadv.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • Ben-Bassat A, Bauer KA, Chang S, Chang SY (1989) Bacterial methionine N-terminal peptidase. Europe Patent EP 0219237 A1, 22 April 1987

  • Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F (2009) Chapter 27 immobilized-metal affinity chromatography (IMAC): a review. In: Richard RB, Murray PD (eds) Methods in Enzymology, Academic Press, 463 439–473. doi:10.1016/S0076-6879(09)63027-5

  • Bradshaw RA, Brickey WW, Walker KW (1998) N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families. Trends Biochem Sci 23:263–267

    Article  CAS  PubMed  Google Scholar 

  • Chang S-YP, McGary EC, Chang S (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171:4071–4072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan JDJ, Liu JO (2006) Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b posses antimalarial activity. Proc Natl Acad Sci U S A 103:14548–14553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xie S, Bhat S, Kumar N, Shapiro TA, Liu JO (2009) Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chem Biol 16:193–202

    Article  CAS  PubMed  Google Scholar 

  • Chiu C-H, Lee C-Z, Lin K-S, Tam MF, Lin L-Y (1999) Amino acid residues involved in the functional integrity of Escherichia coli methionine aminopeptidase. J Bacteriol 181:4686–4689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuatrecasas P (1970) Protein purification by affinity chromatography: derivatizations of agarose and polyacrylamide beads. J Biol Chem 245:3059–3065

    CAS  PubMed  Google Scholar 

  • Davis MT, Beierle J, Bures ET, McGinley MD, Mort J, Robinson JH, Spahr CS, Yu W, Luethy R, Patterson SD (2001) Automated LC–LC–MS–MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. J Chromatogr B Biomed Appl 752:281–291. doi:10.1016/S0378-4347(00)00547-8

    Article  CAS  Google Scholar 

  • Delahunty CM, Yates JR (2007) MudPIT: multidimensional protein identification technology. BioTechniques 43:563, 565, 567 passim

  • Didier PJ, Phillips JN, Kuebler DJ, Nasr M, Brindley PJ, Stovall ME, Bowers LC, Didier ES (2006) Antimicrosporidial activities of fumagillin, TNP-470, ovalicin and ovalicin derivates in vitro and in vivo. Antimicrob Agents Chemother 50:2146–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan M-S, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511 doi:http://www.nature.com/nature/journal/v419/n6906/suppinfo/nature01097_S1.html

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, pp 571–607

  • Griffith EC, Su Z, Turk BE, Chen S, Chang Y-H, Wu Z, Biemann K, Liu JO (1997) Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 4:461–471. doi:10.1016/S1074-5521(97)90198-8

    Article  CAS  PubMed  Google Scholar 

  • Gross E, Witkop B (1962) Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem 237:1856–1860

    CAS  PubMed  Google Scholar 

  • Hughes TE, Vath JE (2010) Method of treating an overweight or obese subject. USA Patent WO 2010065883 A2, 05 February 2013

  • Ichihara T, Akada JK, Kamei S, Ohshiro S, Sato D, Fujimoto M, Kuramitsu Y, Nakamura K (2006) A novel approach of protein immobilization for protein chips using an oligo-cysteine tag. J Proteome Res 5:2144–2151. doi:10.1021/pr0504889

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598. doi:10.1016/0003-2697(70)90146-6

    Article  CAS  PubMed  Google Scholar 

  • Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12:268–274. doi:10.2174/138920111794295693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-Y, Chen L-L, Cui Y-M, Luo Q-L, Gu M, Nan F-J, Ye Q-Z (2004a) Characterization of full length and truncated type I human methionine aminopeptidases expressed from Escherichia coli. Biochemistry 43:7892–7898. doi:10.1021/bi0360859

    Article  CAS  PubMed  Google Scholar 

  • Li J-Y, Cui Y-M, Chen L-L, Gu M, Li J, Nan F-J, Ye Q-Z (2004b) Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity. J Biol Chem 279:21128–21134. doi:10.1074/jbc.M401679200

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chang Y-H (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A 92:12357–12361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao YD (2005) Removal of N-terminal methionine from proteins by engineered methionine aminopeptidase. USA Patent US 20050214899 A1, 29 September 2005

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Matthews BW (2000) Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167

    Article  CAS  PubMed  Google Scholar 

  • Marschner A, Klein CD (2015) Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Biochimie 115:35–43. doi:10.1016/j.biochi.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  • Meinnel T, Mechulam Y, Blanquet S (1993) Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Ruebush S, D'Souza VM, Copik AJ, Tsunasawa S, Holz RC (2002) Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 41:7199–7208. doi:10.1021/bi020138p

    Article  CAS  PubMed  Google Scholar 

  • Nitsche C, Klein CD (2013) Fluorimetric and HPLC-based dengue virus protease assays using a FRET substrate. In: Gong EY (ed) Antiviral methods and protocols, methods in molecular biology. Humana Press 1030:221–236. doi:10.1007/978-1-62703-484-5_18

  • PlasmoDB (2015) PfMetAP 1b entry (Gene ID: PF10_0150) http://plasmodb.org/plasmo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&source_id=PF3D7_1015300&project_id=PlasmoDB. Accessed 08 August 2015

  • Schiffmann R, Neugebauer A, Klein CD (2005) Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure–activity relationships and development of a novel scoring function for metal–ligand interactions. J Med Chem 49:511–522. doi:10.1021/jm050476z

    Article  Google Scholar 

  • Tsunasawa S, Izu Y, Miyagi M, Kato I (1997) Methionine aminopeptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: molecular cloning and overexperssion in Escherichia coli of the gene, and characteristics of the enzyme. J Biochem 122:843–850

    Article  CAS  PubMed  Google Scholar 

  • Tsunasawa S, Stewart JW, Sherman F (1985) Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J Biol Chem 260:5382–5391

    CAS  PubMed  Google Scholar 

  • Voráčková I, Suchanová Š, Ulbrich P, Diehl WE, Ruml T (2011) Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr Purif 79:88–95. doi:10.1016/j.pep.2011.04.022

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker KW, Bradshaw RA (1998) Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: A case of mistaken identity? Protein Sci 7:2684–2687. doi:10.1002/pro.5560071224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Heiko Rudy for measuring ESI high-resolution spectra and Lena Weigel for performing LC-MS analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian D. Klein.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary materials

ESM 1

(PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calcagno, S., Klein, C.D. N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b. Appl Microbiol Biotechnol 100, 7091–7102 (2016). https://doi.org/10.1007/s00253-016-7470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7470-3

Keywords

Navigation