Skip to main content
Log in

Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2–4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx13 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe3+-inclusive medium perhaps due to elevated transcripts of two Fe3+ transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chung WH, Kim KD, Roe JH (2005) Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochem Biophys Res Commun 330:604–610

    Article  CAS  PubMed  Google Scholar 

  • Collinson EJ, Grant CM (2002) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497

    Article  Google Scholar 

  • Collinson EJ, Wheeler G, Garrido EO, Avery AM, Avery SV, Grant CM (2002) The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 277:16712–16717

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Malys N, Gaskell SJ, Barber J (2013) Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J Proteome Res 12:2885–2894

    Article  CAS  PubMed  Google Scholar 

  • Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxidative species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5:1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Eckers E, Bien M, Stroobant V, Hermann JM, Deponte M (2009) Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redox. Biochemistry 48:1410–1423

    Article  CAS  PubMed  Google Scholar 

  • Fang WG, Zhang YJ, Yang XY, Zheng XL, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85:18–24

    Article  CAS  PubMed  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress condions. Mol Microbiol 39:533–541

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, Perrone G, Dawes IW (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253:893–898

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  • Herrero E, Bellí G, Casas C (2010) Structural and functional diversity of glutaredoxins in yeast. Curr Protein Pept Sci 11:659–668

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1979) Glutathione-dependent synthesis of deoxyribonucleotides-purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem 254:3664–3671

    CAS  PubMed  Google Scholar 

  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo A, Casas C, Mühlenhoff U, Lilling CH, Herrero E (2008) Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell 7:1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Casas C, Herrero E (2010) Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins. Microbiol-SGM 156:2608–2620

    Article  CAS  Google Scholar 

  • Jbel M, Mercier A, Labbé S (2011) Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot Cell 10:629–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KD, Kim HJ, Lee KC, Roe JH (2011) Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast. Biochem Biophys Res Commun 408:609–614

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ, Li CR, Huang B, Fan MZ (2001) Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chin Sci Bull 46:751–753

  • Li F, Shi HQ, Ying SH, Feng MG (2015) Distinct contributions of one Fe- and two Cu/Zn-cofactored superoxide dismutases to antioxidation, UV tolerance and virulence of Beauveria bassiana. Fungal Genet Biol 81:160–171

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesecke N, Mittler S, Eckers E, Herrmann JM, Deponte M (2008a) Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47:1452–1463

    Article  CAS  PubMed  Google Scholar 

  • Mesecke N, Spang A, Deponte M, Herrmann JM (2008b) A novel group of glutaredoxins in the cis-Golgi critical for oxidative sress resistance. Mol Biol Cel 19:2673–2680

    Article  CAS  Google Scholar 

  • Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metabol 12:373–385

    Article  Google Scholar 

  • Muller EGD (1996) A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 7:1805–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Tsubouchi R, Fukayama M, Yoshino M (2014) Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase. Biometals 27:551–558

    Article  CAS  PubMed  Google Scholar 

  • Oh YM, Hong SK, Yeon JT, Cha MK, Kim IH (2012) Interaction between Saccharomyces cerevisiae glutaredoxin 5 and SPT10 and their in vivo functions. Free Radic Biol Med 52:1519–1530

    Article  CAS  PubMed  Google Scholar 

  • Pedrajas JR, Padilla CA, McDonagh B, Bárcena JA (2010) Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-Cys peroxiredoxin in Saccharomyces cerevisiae. Antioxid Redox Signal 13:249–258

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Carrion N, de la Torre-Ruiz MA (2010) Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in which contributes to oxidative stress resistance. Appl Environ Microbiol 76:7826–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–5165

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19:8180–8190

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Manzaneque MT, Tamarit J, Bellí G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato I, Shimatani K, Fujita K, Abe T, Shimizu M, Fujii T, Hoshino T, Takaya N (2011) J Biol Chem 286:20283–20291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. Biochem J 277:16853–16859

    CAS  Google Scholar 

  • Ströher E, Millar AH (2012) The biological roles of glutaredoxins. Biochem J 446:333–348

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarrio N, Garcia-Leiro A, Cerdán ME, González-Siso MI (2008) The role of glutathione reductase in the interplay between oxidatvie stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 10:1364–1567

    Google Scholar 

  • Toledano MB, Delaunay-Moisan A, Outten CE, Igbaria A (2013) Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal 18:1699–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter EW, Grant CM (2002) Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol Microbiol 46:869–878

    Article  CAS  PubMed  Google Scholar 

  • Vachon P, Mercier A, Jbel M, Labbé S (2012) The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. Eukaryot Cell 11:806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10:415–421

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Zhang LB, Ying SH, Feng MG (2013) Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 15:409–418

    Article  CAS  PubMed  Google Scholar 

  • Xiao GH, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang CS, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep-UK 2:483

    Google Scholar 

  • Xie XQ, Wang J, Huang BF, Ying SH, Feng MG (2010) A new maganese superoxide dismutase identified from Beauveria bassiana enhances virulences and stress tolerance when overexpressed in the fungal pathogen. Appl Microbiol Biotechnol 86:1543–1553

    Article  CAS  PubMed  Google Scholar 

  • Xie XQ, Li F, Ying SH, Feng MG (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS One 7:e30298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie XQ, Guan Y, Ying SH, Feng MG (2013) Differentiated functions of Ras1 and Ras2 proteins in regulating the germination growth, conidiatin, multi-stress tolerance and virulence of Beauveria bassiana. Environ Microbiol 15:447–462

    Article  CAS  PubMed  Google Scholar 

  • Ying SH, Feng MG (2006) Novel blastospore-based transformation system for integration of phosphimothricin resistance and green fluorescence protein genes into Beauveria bassiana. Appl Microbiol Biotechnol 72:206–210

    Article  CAS  PubMed  Google Scholar 

  • Zhang LB, Tang L, Ying SH, Feng MG (2015) Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in Beauveria bassiana. Fungal Genet Biol 76:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhao HT, Kalivendi S, Zhang H, Joseph J, Nithipatikom K (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grants 31270537, 31572054 and 31321063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guang Feng.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary materials

ESM 1

(PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LB., Tang, L., Ying, SH. et al. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana . Appl Microbiol Biotechnol 100, 5907–5917 (2016). https://doi.org/10.1007/s00253-016-7420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7420-0

Keywords

Navigation