Skip to main content
Log in

Identification of beer spoilage microorganisms using the MALDI Biotyper platform

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andres-Barrao C, Benagli C, Chappuis M, Ortega Perez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81. doi:10.1016/j.syapm.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  • Arnold RJ, Reilly JP (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 269(1):105–112. doi:10.1006/abio.1998.3077

    Article  CAS  PubMed  Google Scholar 

  • Back W (1994) Secondary contaminations in the filling area. Brauwelt International 4:326–333

    Google Scholar 

  • Back W (2006) Colour atlas and handbook of beverage biology. Carl, Nürnberg, Germany

    Google Scholar 

  • Barney M, Volgyi A, Navarro A, Ryder D (2001) Riboprinting and 16S rRNA gene sequencing for identification of brewery pediococcus isolates. Appl Environ Microbiol 67(2):553–560. doi:10.1128/aem.67.2.553-560.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44(1):104–109. doi:10.1016/j.clinbiochem.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Falsen E, Hoste B, Ohlén M, Goris J, Govan JR, Gillis M, Vandamme P (2000) Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 50(2):887–899. doi:10.1099/00207713-50-2-887

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann R, Strauch E, Alter T (2010) Rapid identification and characterization of vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol 109(1):199–211. doi:10.1111/j.1365-2672.2009.04647.x

    CAS  PubMed  Google Scholar 

  • Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18(10):1610–1623. doi:10.1101/gr.076075.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duskova M, Sedo O, Ksicova K, Zdrahal Z, Karpiskova R (2012) Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int J Food Microbiol 159(2):107–114. doi:10.1016/j.ijfoodmicro.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  • Fagerquist CK, Bates AH, Heath S, King BC, Garbus BR, Harden LA, Miller WG (2006) Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. J Proteome Res 5(10):2527–2538. doi:10.1021/pr050485w

    Article  CAS  PubMed  Google Scholar 

  • Fernadez-Espinar MT, Esteve-Zarzoso B, Querol A, Barrio E (2000) RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek 78(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Fracalanzza SAP, Scheidegger EMD, PFd S, PC L, LM T (2007) Antimicrobial resistance profiles of enterococci isolated from poultry meat and pasteurized milk in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 102(7):853–859

    Article  PubMed  Google Scholar 

  • Fujii T, Nakashima K, Hayashi N (2005) Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. J Appl Microbiol 98(5):1209–1220. doi:10.1111/j.1365-2672.2005.02558.x

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Ito M, Horiike S, Taguchi H (2001) Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Appl Microbiol Biotechnol 55(5):596–603

    Article  CAS  PubMed  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(10):1227–1232. doi:10.1002/(sici)1097-0231(19960731)10:10<1227::aid-rcm659>3.0.co;2-6

    Article  CAS  PubMed  Google Scholar 

  • Huhtamella S, Leinonen M, Nieminen T, Fahnert B, Myllykoski L, Breitenstein A, Neubauer P (2007) RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. J Microbiol Methods 68(3):543–553. doi:10.1016/j.mimet.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  • Hutzler M, Müller-Auffermann K, Koob J, Riedl R, Jacob F (2013) Beer spoiling microorganisms—a current overview. Brauwelt Int 31:23–25

    Google Scholar 

  • Iijima K, Asano S, Suzuki K, Ogata T, Kitagawa Y (2008) Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci. Biosci Biotechnol Biochem 72(10):2764–2766. doi:10.1271/bbb.80297

    Article  CAS  PubMed  Google Scholar 

  • Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125(2):162–169. doi:10.1016/j.ijfoodmicro.2008.03.042

    Article  CAS  PubMed  Google Scholar 

  • Kern CC, Vogel RF, Behr J (2014) Differentiation of Lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol 40:18–24. doi:10.1016/j.fm.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  • Kloos WE, Schleifer KH (1975) Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Evol Microbiol 25(1):62–79. doi:10.1099/00207713-25-1-62

    CAS  Google Scholar 

  • Koivula TT, Juvonen R, Haikara A, Suihko ML (2006) Characterization of the brewery spoilage bacterium obesumbacterium Proteus by automated ribotyping and development of PCR methods for its biotype. J Appl Microbiol 100(2):398–406. doi:10.1111/j.1365-2672.2005.02794.x

    Article  CAS  PubMed  Google Scholar 

  • Lues J, Ikalafeng B, Maharasoa M, Shale K, Malebo N, Pool E (2011) Staphylococci and other selected microbiota associated with indigenous traditional beer. Afr J Microbiol Res 5(13):1691–1696

    Google Scholar 

  • Manzano M, Cocolin L, Longo B, Comi G (2004) PCR-DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 85(1):23–27. doi:10.1023/b:anto.0000020270.44019.39

    Article  CAS  PubMed  Google Scholar 

  • March C, Manclus JJ, Abad A, Navarro A, Montoya A (2005) Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera. J Immunol Methods 303(1–2):92–104. doi:10.1016/j.jim.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Corominas L, Garriga M, Aymerich T (2009) Identification and tracing of Enterococcus spp. by RAPD-PCR in traditional fermented sausages and meat environment. J Appl Microbiol 106(1):66–77. doi:10.1111/j.1365-2672.2008.03976.x

    Article  CAS  PubMed  Google Scholar 

  • Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46(6):1946–1954. doi:10.1128/jcm.00157-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, Fahr AM, He Y, Ilina EN, Kostrzewa M, Maier T, Mancinelli L, Moussaoui W, Prevost G, Putignani L, Seachord CL, Tang YW, Harmsen D (2009) High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 47(11):3732–3734. doi:10.1128/jcm.00921-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128(2):288–296. doi:10.1016/j.ijfoodmicro.2008.08.019

    Article  CAS  PubMed  Google Scholar 

  • Pham T, Wimalasena T, Box WG, Koivuranta K, Storgårds E, Smart KA, Gibson BR (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J Inst Brew 117(4):556–568. doi:10.1002/j.2050-0416.2011.tb00504.x

    Article  CAS  Google Scholar 

  • Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73(4):746–750

    Article  CAS  PubMed  Google Scholar 

  • Saez JS, Lopes CA, Kirs VE, Sangorrin M (2011) Production of volatile phenols by Pichia manshurica and Pichia membranifaciens isolated from spoiled wines and cellar environment in Patagonia. Food Microbiol 28(3):503–509. doi:10.1016/j.fm.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  • Saffert RT, Cunningham SA, Ihde SM, Monson Jobe KE, Mandrekar J, Patel R (2011) Comparison of Bruker biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometer to BD phoenix automated microbiology system for identification of Gram-negative bacilli. J Clin Microbiol 49(3):887–892

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato H, Teramoto K, Ishii Y, Watanabe K, Benno Y (2011) Ribosomal protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for phylogenety-based subspecies resolution of Bifidobacterium longum. Syst Appl Microbiol 34(1):76–80. doi:10.1016/j.syapm.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  • Schmitt BH, Cunningham SA, Dailey AL, Gustafson DR, Patel R (2013) Identification of anaerobic bacteria by Bruker biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry with on-plate formic acid preparation. J Clin Microbiol 51(3):782–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schurr BC, Behr J, Vogel RF (2015) Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol 46:501–506. doi:10.1016/j.fm.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  • Silvetti T, Brasca M, Lodi R, Vanoni L, Chiolerio F, de Groot M, Bravi A (2010) Effects of lysozyme on the microbiological stability and organoleptic properties of unpasteurized beer. J Inst Brew 116(1):33–40. doi:10.1002/j.2050-0416.2010.tb00395.x

    Article  CAS  Google Scholar 

  • Teramoto K, Sato H, Sun L, Torimura M, Tao H, Yoshikawa H, Hotta Y, Hosoda A, Tamura H (2007) Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal Chem 79(22):8712–8719. doi:10.1021/ac701905r

    Article  CAS  PubMed  Google Scholar 

  • Timke M, Wang-Lieu NQ, Altendorf K, Lipski A (2005) Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71(10):6446–6452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timke M, Wang-Lieu NQ, Altendorf K, Lipski A (2008) Identity, beer spoiling and biofilm forming potential of yeasts from beer bottling plant associated biofilms. Antonie Van Leeuwenhoek 93(1–2):151–161. doi:10.1007/s10482-007-9189-8

    Article  PubMed  Google Scholar 

  • Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho Mda G, Facklam RR, Lovgren M (2002) Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 40(4):1140–1145

    Article  PubMed Central  PubMed  Google Scholar 

  • Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71(1):58–64. doi:10.1128/aem.71.1.58-64.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Aa Kuhle A, Jespersen L (1998) Detection and identification of wild yeasts in lager breweries. Int J Food Microbiol 43(3):205–213

    Article  Google Scholar 

  • Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G (2008) Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. J Appl Microbiol 105(4):951–962. doi:10.1111/j.1365-2672.2008.03799.x

    Article  CAS  PubMed  Google Scholar 

  • Whiting MS, Ingledew WM, Lee SY, Ziola B (1999) Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci. Can J Microbiol 45(8):670–677

    Article  CAS  PubMed  Google Scholar 

  • Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 185:41–50 doi:http://dx.doi.org/10.1016/j.ijfoodmicro.2014.05.003

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  • Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N, Wahl K (2005a) Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser desorption/ionization whole cell protein fingerprints. J Microbiol Methods 62(3):259–271. doi:10.1016/j.mimet.2005.04.033

    Article  CAS  PubMed  Google Scholar 

  • Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E (2005b) Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison. J Am Soc Mass Spectrom 16(4):456–462. doi:10.1016/j.jasms.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  • Yasui T, Okamoto T, Taguchi H (1997) A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction. Can J Microbiol 43(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Zago M, Bonvini B, Carminati D, Giraffa G (2009) Detection and quantification of Enterococcus gilvus in cheese by real-time PCR. Syst Appl Microbiol 32(7):514–521 doi:http://dx.doi.org/10.1016/j.syapm.2009.07.001

Download references

Acknowledgments

The authors would further like to thank David Jones, Janie Zimmermann, Leon Dimitriou, Gurpreet Brar and the biological quality control team of Coopers Brewery Ltd. for their kind preparation and provision of samples from brewery production processes. This work was funded by the Photonics Catalyst Programme, PCP project code 014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hoffmann.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Michelle Elizabeth Turvey and Florian Weiland contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turvey, M.E., Weiland, F., Meneses, J. et al. Identification of beer spoilage microorganisms using the MALDI Biotyper platform. Appl Microbiol Biotechnol 100, 2761–2773 (2016). https://doi.org/10.1007/s00253-016-7344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7344-8

Keywords

Navigation