Skip to main content
Log in

Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar d-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We previously identified the aur1 gene cluster which produces the angucycline antibiotic auricin. Preliminary characterisation of auricin revealed that it is modified by a single aminodeoxysugar, d-forosamine. Here we characterise the d-forosamine-specific genes. The four close tandem genes, aur1TQSV, encoding enzymes involved in the initial steps of the deoxysugar biosynthesis, were located on a large operon with other core auricin biosynthetic genes. Deleting these genes resulted in the absence of auricin and the production of deglycosylated auricin intermediates. The two final d-forosamine biosynthetic genes, sa59, an NDP-hexose aminotransferase, and sa52, an NDP-aminohexose N-dimethyltransferase, are located in a region rather distant from the core auricin genes. A deletion analysis of these genes confirmed their role in d-forosamine biosynthesis. The Δsa59 mutant had a phenotype similar to that of the cluster deletion mutant, while the Δsa52 mutant produced an auricin with a demethylated d-forosamine. Although auricin contains a single deoxyhexose, two glycosyltransferase genes were found to participate in the attachment of d-forosamine to the auricin aglycon. An analysis of the expression of the d-forosamine biosynthesis genes revealed that the initial d-forosamine biosynthetic genes aur1TQSV are regulated together with the other auricin core genes by the aur1Ap promoter under the control of the auricin-specific activator Aur1P. The expression of the other d-forosamine genes, however, is governed by promoters differentially dependent upon the two SARP family auricin-specific activators Aur1PR3 and Aur1PR4. These promoters contain direct repeats similar to the SARP consensus sequence and are involved in the interaction with both regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DO, Seidman JS, Smith JA, Struhl K (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, Framboisier X, Leblond P, Challis GL, Aigle B (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Cundliffe E (2008) Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491

    CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 18:1541–1548

    Article  Google Scholar 

  • Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister D, Ichinose K, Domann S, Faust B, Trefzer A, Drager G, Kirsching A, Fischer C, Kunzel E, Bearden DW, Rohr J, Bechthold A (2000) The NDP-sugar co-substrate concentration and enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol 7:821–831

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Zhao Z, Melancon CE III, Zhang H, Liu H (2008) In vitro characterization of the enzymes involved in TDP-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. J Am Chem Soc 130:4954–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi S, Hara O, Beppu T (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 155:1238–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isiorho EA, Jeon B-S, Kim NH, Liu H-W, Keatinge-Clay AT (2014) Structural studies of the spinosyn forosaminyltransferase, SpnP. Biochemistry 53:4292–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault M-H, Gerbaud C, Pernodet J-L (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology-SGM 153:4111–4122

    Article  CAS  Google Scholar 

  • Kharel MK, Pahari P, Shephard MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J (2012) Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29:264–325

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

  • Kormanec J (2001) Analyzing the developmental expression of sigma factors with S1-nuclease mapping. In: Chein CH (ed) Nuclease methods and protocols. Methods in molecular biology 160. Humana, Totowa, pp 481–494

    Chapter  Google Scholar 

  • Kormanec J, Farkasovsky M (1993) Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with the developmental stage. Nucleic Acids Res 21:3647–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kormanec J, Novakova R, Mingyar E, Feckova L (2014) Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Appl Microbiol Biotechnol 98:45–60

    Article  CAS  PubMed  Google Scholar 

  • Kutas P, Feckova L, Rehakova A, Novakova R, Homerova D, Mingyar E, Rezuchova B, Sevcikova B (2013) Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism. Appl Microbiol Biotechnol 97:2413–2421

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, McKamey P, Edwards R, Graupner PR (2009) Discovery of the butenyl-spinosyn insecticides: novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 17:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzhetskyy A, Vente A, Bechthold A (2005) Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. Mol BioSyst 1:117–126

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273

    Article  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:449–560

    Article  Google Scholar 

  • Mingyar E, Feckova L, Novakova R, Bekeova C, Kormanec J (2015) A γ-butyrolactone autoregulator-receptor system involved in the regulation of auricin production in Streptomyces aureofaciens CCM 3239. Appl Microbiol Biotechnol 99:309–325

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HC, Karray F, Lautru S, Gagnat J, Lebrihi A, Huynh TDH, Pernodet J-L (2010) Glycosylation steps during spiramycin biosynthesis in Streptomyces ambofaciens: involvement of three glycosyltransferases and their interplay with two auxiliary proteins. Antimicrob Agents Chemother 54:2830–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakova R, Bistakova J, Homerova D, Rezuchova B, Kormanec J (2002) Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM3239. Gene 297:197–208

    Article  CAS  PubMed  Google Scholar 

  • Novakova R, Homerova D, Feckova L, Kormanec J (2005) Characterization of a regulatory gene essential for the production of the angucycline-like polyketide antibiotic auricin in Streptomyces aureofaciens CCM 3239. Microbiology-SGM 151:2693–2706

    Article  CAS  Google Scholar 

  • Novakova R, Kutas P, Feckova L, Kormanec J (2010) The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology-SGM 156:2374–2383

    Article  CAS  Google Scholar 

  • Novakova R, Rehakova A, Feckova L, Kutas P, Knirschova R, Kormanec J (2011a) Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiol 56:278–282

    Article  Google Scholar 

  • Novakova R, Rehakova A, Kutas P, Feckova L, Kormanec J (2011b) The role of two SARP-family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology-SGM 157:1629–1639

    Article  CAS  Google Scholar 

  • Novakova R, Knirchova R, Farkasovsky M, Feckova L, Rehakova A, Mingyar E, Kormanec J (2013) The gene cluster aur1 for the angucycline antibiotic auricin is located on a large linear plasmid pSA3239 in Streptomyces aureofaciens CCM 3239. FEMS Microbiol Lett 342:130–137

    Article  CAS  PubMed  Google Scholar 

  • Rehakova A, Novakova R, Feckova L, Mingyar E, Kormanec J (2013) A gene determining a new member of the SARP family contributes to transcription of genes for the synthesis of the angucycline polyketide auricin in Streptomyces aureofaciens CCM3239. FEMS Microbiol Lett 346:45–55

    Article  CAS  PubMed  Google Scholar 

  • Salas JA, Méndez C (2005) Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9:77–85

    Article  CAS  PubMed  Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Mochizuki S, Yamamoto S, Arakawa K, Kinashi H (2010) Regulation of lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ. Biosci Biotechnol Biochem 74:819–827

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Takano Y, Ohnishi Y, Horinouchi S (2007) AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369:322–333

    Article  CAS  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    Article  PubMed  Google Scholar 

  • Waldron C, Matsushima P, Rosteck PR Jr, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz R (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499

    Article  CAS  PubMed  Google Scholar 

  • Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387

    Article  CAS  PubMed  Google Scholar 

  • Wietzorreck A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appear to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    Article  Google Scholar 

  • Yu Q, Du A, Liu T, Deng A, He X (2012) The biosynthesis of the polyether antibiotic nanchangmycin is controlled by two pathway-specific transcriptional activators. Arch Microbiol 194:415–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Bertold Gust (John Innes Centre, Norwich, UK) for kindly providing all the plasmids and strains used in the PCR targeting system; the system itself was supplied by Plant Bioscience Ltd. (Norwich, UK). This work was supported by the Slovak Research and Development Agency under contract No. APVV-0203-11. The research leading to these results received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement STREPSYNTH (project No. 613877). This work was co-funded by the Slovak Research and Development Agency under contract No. DO7RP-0037-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kormanec.

Ethics declarations

This article does not contain any studies with human participants or animal preformed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekeova, C., Rehakova, A., Feckova, L. et al. Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar d-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239. Appl Microbiol Biotechnol 100, 3177–3195 (2016). https://doi.org/10.1007/s00253-015-7214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7214-9

Keywords

Navigation