Skip to main content
Log in

Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed IN, Nguyen PL, Huynh LH, Ismadji S, Ju YH (2013) Bioethanol production from pretreated Melaleuca leucadendron shedding bark simultaneous saccharification and fermentation at high solid loading. Bioresour Technol 136:213–21

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82(4):340–349

    Article  CAS  Google Scholar 

  • Bertilsson M, Olofsson K, Lidén G (2009) Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. Biotechnol Biofuels 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Białas W, Czerniak A, Szymanowska-Powałowska D (2014) Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production. Acta Biochim Pol 61(1):153–62

    PubMed  Google Scholar 

  • Canilha L, Santos VT, Rocha GJ, Almeida e Silva JB, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38(9):1467–75

    Article  CAS  PubMed  Google Scholar 

  • Elliston A, Collins SR, Wilson DR, Roberts IN, Waldron KW (2013) High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour Technol 134:117–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–53

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilbert A, Sangurdekar DP, Srienc F (2009) Rapid strain improvement through optimized evolution in the cytostat. Biotechnol Bioeng 103(3):500–12

    Article  CAS  PubMed  Google Scholar 

  • Hoyer K, Galbe M, Zacchi G (2009) Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J Chem Technol Biotechnol 84:570–577

    Article  CAS  Google Scholar 

  • Huang R, Cao M, Guo H, Qi W, Su R, He Z (2014) Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. J Agric Food Chem 62(20):4643–51

    Article  CAS  PubMed  Google Scholar 

  • Koppram R, Olsson L (2014) Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels 7(1):54

    Article  PubMed Central  PubMed  Google Scholar 

  • Koppram R, Tomás-Pejó E, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 8(9):e73936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90(3):809–25

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi A, Schell DJ (2010) Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol. Biotechnol Bioeng 105(5):992–6

    CAS  PubMed  Google Scholar 

  • Morales-Rodriguez R, Meyer AS, Gernaey KV, Sin G (2011) Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour Technol 102(2):1174–84

    Article  CAS  PubMed  Google Scholar 

  • Mutturi S, Lidén G (2014) Model-based estimation of optimal temperature profile during simultaneous saccharification and fermentation of Arundo donax. Biotechnol Bioeng 111(5):866–75

    Article  CAS  PubMed  Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:1–7

    Article  Google Scholar 

  • Olofsson K, Wiman M, Lidén G (2010) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and cofermentation for bioethanol production. J Biotechnol 145:168–175

    Article  CAS  PubMed  Google Scholar 

  • Peña PV, Glasker S, Srienc F (2013) Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae. J Biotechnol 164(1):26–33

    Article  PubMed  Google Scholar 

  • Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41(9):846–853

    Article  CAS  PubMed  Google Scholar 

  • Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steampretreated Salix at high dry-matter content. Enzyme Microb Technol 39(4):756–762

    Article  CAS  Google Scholar 

  • Sluiter AD, Hames BR, Ruiz RO, Scarlata C, Sluiter JB, Templeton DW, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) NREL/TP-510-42618 Golden, CO. National Renewable Energy Laboratory, CO

    Google Scholar 

  • South CR, Hogsett DA, Lynd LR (1995) Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors. Enz Microb Technol 17:797–803

    Article  CAS  Google Scholar 

  • Spangler DJ, Emert GH (1986) Simultaneous saccharification/fermentation with Zymomonas mobilis. Biotechnol Bioeng 28(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Suriyachai N, Laosiripojana N, Champreda V, Unrean P (2013) Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresour Technol 142:171–78

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Abe S, Suzuki S, Emert GH, Yata N (1977) A method for production of alcohol directly from cellulose using cellulase and yeast. Proceedings of Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. New Delhi, 551–571

  • Unrean P, Franzen CJ (2015) Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Biotechnol J doi: 10.1002/biot.201400833

  • Unrean P, Khajeeram S (2015) Model-based optimization of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for efficient lignocellulosic ethanol production. Bioresour Bioprocess 2:41

  • Unrean P, Jeennor S, Laoteng K (2015) Development of efficient biomass production by Scheffersomyces stipitis using systematic tools, submitted

  • van Zyl JM, van Rensburg E, van Zyl WH, Harms TM, Lynd LR (2011) A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae. Biotechnol Bioeng 108(4):924–33

    Article  PubMed  Google Scholar 

  • Wang R, Koppram R, Olsson L, Franzén CJ (2014) Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresour Technol 172:303–11

    Article  CAS  PubMed  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–17

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shao X, Townsend OV, Lynd LR (2009) Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222 Part I: kinetic modeling and parameters. Biotechnol Bioeng 104(5):920–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–64

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Song Y, Liu D (2011) Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreatment sugarcane bagasse for ethanol and 2,3-butanediol production. Enzyme Microb Technol 49:413–419

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Dong L, Chen L, Liu D (2013) Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers. Bioresour Technol 135:350–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Thailand Research Fund (Grant No. P-15-51025) and the National Center for Genetic Engineering and Biotechnology, Thailand (Grant No. P-15-50042). The authors would like to thank Miss Rujirek Nopgason and Mr. Nakul Rattanaphan for all the help during pretreatment and SSF experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornkamol Unrean.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unrean, P., Khajeeram, S. & Laoteng, K. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae . Appl Microbiol Biotechnol 100, 2459–2470 (2016). https://doi.org/10.1007/s00253-015-7173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7173-1

Keywords

Navigation