Skip to main content

Advertisement

Log in

Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial community compositions of a chemostat enriched in a thermophilic (55 °C) mixed culture fermentation (MCF) for hydrogen production under different operational conditions were revealed in this work by integrating denaturing gradient gel electrophoresis (DGGE), Illumina Miseq high-throughput sequencing, and 16S rRNA clone library sequencing. The results showed that the community structure of the enriched cultures was relatively simple. Clones close to the genera of Thermoanaerobacter and/or Bacillus mainly dominated the bacteria. And homoacetogens and archaea were washed out and not detected even by Illumina Miseq high-throughput sequencing which supported the benefit for hydrogen production. On the other hand, the results revealed that the metabolic shift was clearly associated with the change of dominated bacterial groups. The effects of hydrogen partial pressure (PH2) and pH from 4.0 to 5.5 on the microbial compositions were not notable and Thermoanaerobacter was dominant, thus, the metabolites were also not changed. While Bacillus, Thermoanaerobacter and Propionispora hippei dominated the bacteria communities at neutral pH, or Bacillus and Thermoanaerobacter dominated at high influent glucose concentrations, consequently the main metabolites shifted to acetate, ethanol, propionate, or lactate. Thereby, the effect of microbial composition on the metabolite distribution and shift shall be considered when modeling thermophilic MCF in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Zeid DM, Biebl H, Spröer C, Müller R-J (2004) Propionispora hippei sp. nov., a novel gram-negative, spore-forming anaerobe that produces propionic acid. Int J Syst Bacteriol Evol Microbiol 54(3):951–954

    Article  CAS  Google Scholar 

  • Akutsu Y, Li Y-Y, Harada H, Yu H-Q (2009) Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrog Energy 34(6):2558–2566

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Flamholz A, Noor E, Milo R (2012) Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim Biophys Acta-Bioenergetics 1817(9):1646–1659

    Article  CAS  Google Scholar 

  • de Kok S, Meijer J, van Loosdrecht MCM, Kleerebezem R (2013) Impact of dissolved hydrogen partial pressure on mixed culture fermentations. Appl Microbiol Biotechnol 97(6):2617–2625

    Article  PubMed  CAS  Google Scholar 

  • de Vrije T, Mars A, Budde M, Lai M, Dijkema C, de Waard P, Claassen P (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Gannoun H, Othman NB, Bouallagui H, Moktar H (2007) Mesophilic and thermophilic anaerobic co-digestion of olive mill wastewaters and abattoir wastewaters in an upflow anaerobic filter. Ind Eng Chem Res 46(21):6737–6743

    Article  CAS  Google Scholar 

  • Karakashev D, Kotay SM, Trably E, Angelidaki I (2009) A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste. J Appl Microbiol 106(3):1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212

    Article  PubMed  CAS  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49

    Article  PubMed  Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion. A trade-off between performance and stability? Water Res 53:249–258

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Krajmalinik-Brown R, Zhang HS, Rittmann BE (2009) An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH(2): microbial ecology evidence. Biotechnol Bioeng 104(4):687–697

    PubMed  CAS  Google Scholar 

  • Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97(14):6129–6147

    Article  PubMed  CAS  Google Scholar 

  • Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT (2013) A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea 2013:157529

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen T-AD, Han SJ, Kim JP, Kim MS, Sim SJ (2010) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101(1 Supplement 1):S38–S41

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrog Energy 33(4):1204–1214

    Article  CAS  Google Scholar 

  • Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72(5):3228–3235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pawar S, Niel EJ (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97(18):7999–8009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10(10):2550–2573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ren N, Cao G, Wang A, Lee D-J, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 33(21):6124–6132

    Article  CAS  Google Scholar 

  • Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606

    Article  PubMed  CAS  Google Scholar 

  • Sarma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbiol 70(5):3163–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siriwongrungson V, Zeng RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41(18):4204–4210

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre B, Wright A-D (2014) Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol 98(6):2709–2717

    Article  PubMed  CAS  Google Scholar 

  • Su F, Xu P (2014) Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 4:3926

    PubMed  PubMed Central  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Sakazaki R, Kosako Y, Yoshizaki E (1986) Leclercia adecarboxylata Gen. Nov., Comb. Nov., formerly known as Escherichia adecarboxylata. Curr Microbiol 13(4):179–184

    Article  Google Scholar 

  • Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80(6):1121–1130

    Article  PubMed  CAS  Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67(4):1646–1656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23(3):364–381

    Article  PubMed  CAS  Google Scholar 

  • Ueno H, Ishii I (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57(4):555–562

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Sasaki D, Fukui H, Haruta S, Ishii M, Igarashi Y (2006) Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol 101(2):331–343

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Zhang Y, Chen M, Zeng RJ (2012a) Hydrogen supersaturation in thermophilic mixed culture fermentation. Int J Hydrogen Energy 37(23):17809–17816

    Article  CAS  Google Scholar 

  • Zhang T, Shao M-F, Ye L (2012b) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang F, Ding J, Zhang Y, Chen M, Ding Z-W, van Loosdrecht MCM, Zeng RJ (2013a) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47(16):6122–6129

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ (2013b) A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng 110(7):1884–1894

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Chen Y, Dai K, Zeng R (2014) The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation. Appl Microbiol Biotechnol 98(24):10267–10273

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Chen Y, Dai K, Shen N, Zeng RJ (2015) The glucose metabolic distribution in thermophilic (55°C) mixed culture fermentation: a chemostat study. Int J Hydrog Energy 40(2):919–926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (51408530, 50978244), the China Postdoctoral Science Foundation (2015 T80233), the Natural Science Foundation of Hebei Province (E2015203306), the Postdoctoral Science Foundation of Hebei Province (B2014003008), the National Hi-Technology Development 863 Program of China (2011AA060901), the Hundred-Talent Program of Chinese Academy of Sciences, the Program for Changjiang Scholars and Innovative Research Team in University, and the Fundamental Research Funds for the Central Universities (wk2060190040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Zhang or Raymond J. Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yang, JH., Dai, K. et al. Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Appl Microbiol Biotechnol 100, 1511–1521 (2016). https://doi.org/10.1007/s00253-015-7130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7130-z

Keywords

Navigation