Skip to main content

Advertisement

Log in

Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fruiting bodies or sporocarps of dikaryotic (ascomycetous and basidiomycetous) fungi, commonly referred to as mushrooms, are often rich in entomotoxic and nematotoxic proteins that include lectins and protease inhibitors. These protein toxins are thought to act as effectors of an innate defense system of mushrooms against animal predators including fungivorous insects and nematodes. In this review, we summarize current knowledge about the structures, target molecules, and regulation of the biosynthesis of the best characterized representatives of these fungal defense proteins, including galectins, beta-trefoil-type lectins, actinoporin-type lectins, beta-propeller-type lectins and beta-trefoil-type chimerolectins, as well as mycospin and mycocypin families of protease inhibitors. We also present an overview of the phylogenetic distribution of these proteins among a selection of fungal genomes and draw some conclusions about their evolution and physiological function. Finally, we present an outlook for future research directions in this field and their potential applications in medicine and crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al Atalah B, Smagghe G, Van Damme EJ (2014) Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects. Plant Sci 221–222:21–8

    Article  PubMed  CAS  Google Scholar 

  • Amano K, Katayama H, Saito A, Ando A, Nagata Y (2012) Aleuria aurantia lectin exhibits antifungal activity against Mucor racemosus. Biosci Biotechnol Biochem 76(5):967–70. doi:10.1271/bbb.110982

    Article  PubMed  CAS  Google Scholar 

  • Andre S, Kaltner H, Manning JC, Murphy PV, Gabius HJ (2015) Lectins: getting familiar with translators of the sugar code. Molecules 20(2):1788–1823. doi:10.3390/molecules20021788

    Article  PubMed  CAS  Google Scholar 

  • Angulo I, Acebron I, de las Rivas B, Munoz R, Rodriguez-Crespo I, Menendez M, Garcia P, Tateno H, Goldstein IJ, Perez-Agote B, Mancheno JM (2011) High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile beta-trefoil lectin domain from the mushroom Laetiporus sulphureus. Glycobiology 21(10):1349–61

    Article  PubMed  CAS  Google Scholar 

  • Audfray A, Beldjoudi M, Breiman A, Hurbin A, Boos I, Unverzagt C, Bouras M, Lantuejoul S, Coll JL, Varrot A, Le Pendu J, Busser B, Imberty A (2015) A recombinant fungal lectin for labeling truncated glycans on human cancer cells. PLoS One 10(6):e0128190. doi:10.1371/journal.pone.0128190

    Article  PubMed  PubMed Central  Google Scholar 

  • Avanzo Caglič P, Renko M, Turk D, Kos J, Sabotič J (2014) Fungal beta-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the beta-trefoil fold. Biochim Biophys Acta 1844(10):1749–56. doi:10.1016/j.bbapap.2014.07.004

    Article  PubMed  CAS  Google Scholar 

  • Avanzo P, Sabotič J, Anžlovar S, Popovič T, Leonardi A, Pain RH, Kos J, Brzin J (2009) Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology 155(12):3971–3981. doi:10.1099/mic.0.032805-0

    Article  PubMed  CAS  Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39(2):128–35

    Article  PubMed  CAS  Google Scholar 

  • Ban M, Yoon HJ, Demirkan E, Utsumi S, Mikami B, Yagi F (2005) Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate. J Mol Biol 351(4):695–706

    Article  PubMed  CAS  Google Scholar 

  • Birck C, Damian L, Marty-Detraves C, Lougarre A, Schulze-Briese C, Koehl P, Fournier D, Paquereau L, Samama JP (2004) A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. J Mol Biol 344(5):1409–20

    Article  PubMed  CAS  Google Scholar 

  • Bleuler-Martinez S, Butschi A, Garbani M, Walti MA, Wohlschlager T, Potthoff E, Sabotič J, Pohleven J, Luthy P, Hengartner MO, Aebi M, Künzler M (2011) A lectin-mediated resistance of higher fungi against predators and parasites. Mol Ecol 20(14):3056–70. doi:10.1111/j.1365-294X.2011.05093.x

    Article  PubMed  CAS  Google Scholar 

  • Bleuler-Martinez S, Schmieder S, Aebi M, Künzler M (2012) Biotin-binding proteins in the defense of mushrooms against predators and parasites. Appl Environ Microbiol 78(23):8485–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23(4):383–92

    Article  PubMed  CAS  Google Scholar 

  • Boulianne RP, Liu Y, Aebi M, Lu BC, Kues U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146(Pt 8):1841–53

    Article  PubMed  CAS  Google Scholar 

  • Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M, Monaco HL (2011) Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 21(8):1000–9

    Article  PubMed  CAS  Google Scholar 

  • Bovi M, Cenci L, Perduca M, Capaldi S, Carrizo ME, Civiero L, Chiarelli LR, Galliano M, Monaco HL (2013) BEL beta-trefoil: a novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology 23(5):578–92

    Article  PubMed  CAS  Google Scholar 

  • Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12(5):616–23

    Article  PubMed  CAS  Google Scholar 

  • Brzin J, Rogelj B, Popovič T, Štrukelj B, Ritonja A (2000) Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. J Biol Chem 275(26):20104–9

    Article  PubMed  CAS  Google Scholar 

  • Butschi A, Titz A, Walti MA, Olieric V, Paschinger K, Nobauer K, Guo X, Seeberger PH, Wilson IB, Aebi M, Hengartner MO, Künzler M (2010) Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog 6(1):e1000717. doi:10.1371/journal.ppat.1000717

  • Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, Barrows BD, Aroian RV (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci U S A 103(41):15154–9. doi:10.1073/pnas.0607002103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrizo ME, Capaldi S, Perduca M, Irazoqui FJ, Nores GA, Monaco HL (2005) The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 280(11):10614–23. doi:10.1074/jbc.M411989200

    Article  PubMed  CAS  Google Scholar 

  • Chachadi VB, Inamdar SR, Yu LG, Rhodes JM, Swamy BM (2011) Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans. Glycoconj J 28(1):49–56. doi:10.1007/s10719-011-9323-8

    Article  PubMed  CAS  Google Scholar 

  • Christeller JT (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J 272(22):5710–22. doi:10.1111/j.1742-4658.2005.04975.x

    Article  PubMed  CAS  Google Scholar 

  • Chumkhunthod P, Rodtong S, Lambert SJ, Fordham-Skelton AP, Rizkallah PJ, Wilkinson MC, Reynolds CD (2006) Purification and characterization of an N-acetyl-d-galactosamine-specific lectin from the edible mushroom Schizophyllum commune. Biochim Biophys Acta Gen Subj 1760(3):326–332

    Article  CAS  Google Scholar 

  • Cioci G, Mitchell EP, Chazalet V, Debray H, Oscarson S, Lahmann M, Gautier C, Breton C, Perez S, Imberty A (2006) [beta]-Propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J Mol Biol 357(5):1575–1591

    Article  PubMed  CAS  Google Scholar 

  • Cooper DN, Boulianne RP, Charlton S, Farrell EM, Sucher A, Lu BC (1997) Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272(3):1514–21

    Article  PubMed  CAS  Google Scholar 

  • Cordara G, Egge-Jacobsen W, Johansen HT, Winter HC, Goldstein IJ, Sandvig K, Krengel U (2011) Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochem Biophys Res Commun 408(3):405–10. doi:10.1016/j.bbrc.2011.04.031

    Article  PubMed  CAS  Google Scholar 

  • Crenshaw RW, Harper SN, Moyer M, Privalle LS (1995) Isolation and characterization of a cDNA clone encoding a lectin gene from Agaricus bisporus. Plant Physiol 107(4):1465–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cummings RD, Etzler ME (2009) R-type Lectins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology. 2010/03/20 edn. Cold Spring Harbor Laboratory Press

  • Damian L, Fournier D, Winterhalter M, Paquereau L (2005) Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry. BMC Biochem 6:11. doi:10.1186/1471-2091-6-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deveau A, Barret M, Diedhiou AG, Leveau J, de Boer W, Martin F, Sarniguet A, Frey-Klett P (2015) Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor S238N and three beneficial, neutral and antagonistic soil bacteria. Microb Ecol 69(1):146–59. doi:10.1007/s00248-014-0445-y

    Article  PubMed  Google Scholar 

  • Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50(37):7842–57. doi:10.1021/bi201121m

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunaevsky YE, Popova VV, Semenova TA, Beliakova GA, Belozersky MA (2014) Fungal inhibitors of proteolytic enzymes: classification, properties, possible biological roles, and perspectives for practical use. Biochimie 101:10–20. doi:10.1016/j.biochi.2013.12.007

    Article  PubMed  CAS  Google Scholar 

  • Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi—from forest to application. Trends Biotechnol 30(5):259–273. doi:10.1016/j.tibtech.2012.01.004

    Article  PubMed  CAS  Google Scholar 

  • Fouquaert E, Peumans WJ, Gheysen G, Van Damme EJ (2011) Identical homologs of the Galanthus nivalis agglutinin in Zea mays and Fusarium verticillioides. Plant Physiol Biochem 49(1):46–54. doi:10.1016/j.plaphy.2010.09.018

    Article  PubMed  CAS  Google Scholar 

  • Francis F, Marty-Detraves C, Poincloux R, Baricault L, Fournier D, Paquereau L (2003) Fungal lectin, XCL, is internalized via clathrin-dependent endocytosis and facilitates uptake of other molecules. Eur J Cell Biol 82(10):515–22

    Article  PubMed  CAS  Google Scholar 

  • Fujihashi M, Peapus DH, Kamiya N, Nagata Y, Miki K (2003) Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry 42(38):11093–9. doi:10.1021/bi034983z

    Article  PubMed  CAS  Google Scholar 

  • Fukumori F, Takeuchi N, Hagiwara T, Ohbayashi H, Endo T, Kochibe N, Nagata Y, Kobata A (1990) Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia. J Biochem 107(2):190–6

    PubMed  CAS  Google Scholar 

  • Goldstein IJ, Winter HC (2007) Mushroom lectins. In: Kamerling JP (ed) Comprehensive glycoscience: from chemistry to systems biology, vol 3. Elsevier Ltd., Amsterdam

    Google Scholar 

  • Grahn E, Askarieh G, Holmner A, Tateno H, Winter HC, Goldstein IJ, Krengel U (2007) Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J Mol Biol 369(3):710–21. doi:10.1016/j.jmb.2007.03.016

    Article  PubMed  CAS  Google Scholar 

  • Grahn EM, Winter HC, Tateno H, Goldstein IJ, Krengel U (2009) Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium. J Mol Biol 390(3):457–66. doi:10.1016/j.jmb.2009.04.074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycologia 2(3):192–209

    Google Scholar 

  • Guillot J, Konska G (1997) Lectins in higher fungi. Biochem Syst Ecol 25(3):203–230

    Article  CAS  Google Scholar 

  • Guillot J, Giollant M, Damez M, Dusser M (1994) Involvement of fungal lectins in recognition between mushroom and tree during the early stages of mycorrhizae formation. Acta Botanica Gallica 141(4):443–447

    Article  CAS  Google Scholar 

  • Gzogyan LA, Proskuryakov MT, Ievleva EV, Valueva TA (2005) Trypsin-like proteinases and trypsin inhibitors in fruiting bodies of higher fungi. Appl Biochem Microbiol 41(6):538–541

    Article  CAS  Google Scholar 

  • Hamshou M, Smagghe G, Van Damme EJ (2007) Analysis of lectin concentrations in different Rhizoctonia solani strains. Commun Agric Appl Biol Sci 72(3):639–44

    PubMed  CAS  Google Scholar 

  • Hamshou M, Smagghe G, Shahidi-Noghabi S, De Geyter E, Lannoo N, Van Damme EJ (2010a) Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem Mol Biol 40(12):883–90. doi:10.1016/j.ibmb.2010.08.008

    Article  PubMed  CAS  Google Scholar 

  • Hamshou M, Van Damme EJ, Smagghe G (2010b) Entomotoxic effects of fungal lectin from Rhizoctonia solani towards Spodoptera littoralis. Fungal Biology 114(1):34–40

    Article  PubMed  CAS  Google Scholar 

  • Hamshou M, Van Damme EJ, Vandenborre G, Ghesquiere B, Trooskens G, Gevaert K, Smagghe G (2012) GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling. PLoS One 7(4):e33680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamshou M, Van Damme EJ, Caccia S, Cappelle K, Vandenborre G, Ghesquiere B, Gevaert K, Smagghe G (2013) High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J Insect Physiol 59(3):295–305. doi:10.1016/j.jinsphys.2012.12.003

    Article  PubMed  CAS  Google Scholar 

  • Hassan MA, Rouf R, Tiralongo E, May TW, Tiralongo J (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16(4):7802–38. doi:10.3390/ijms16047802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazes B (1996) The (QxW)3 domain: a flexible lectin scaffold. Protein Sci 5(8):1490–501. doi:10.1002/pro.5560050805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heim C, Hertzberg H, Butschi A, Bleuler-Martinez S, Aebi M, Deplazes P, Künzler M, Štefanić S (2015) Inhibition of Haemonchus contortus larval development by fungal lectins. Parasites & Vectors 8:425. doi:10.1186/s13071-015-1032-x

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111(Pt 5):509–47. doi:10.1016/j.mycres.2007.03.004

    Article  PubMed  Google Scholar 

  • Houser J, Komarek J, Kostlanova N, Cioci G, Varrot A, Kerr SC, Lahmann M, Balloy V, Fahy JV, Chignard M, Imberty A, Wimmerova M (2013) A soluble fucose-specific lectin from Aspergillus fumigatus conidia—structure, specificity and possible role in fungal pathogenicity. PLoS One 8(12):e83077. doi:10.1371/journal.pone.0083077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houser J, Komarek J, Cioci G, Varrot A, Imberty A, Wimmerova M (2015) Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent. Acta Crystallogr D Biol Crystallogr 71(Pt 3):442–53. doi:10.1107/S1399004714026595

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Zhan B, Keegan B, Yiu YY, Miller MM, Jones K, Aroian RV (2012) Mechanistic and single-dose in vivo therapeutic studies of Cry5B anthelmintic action against hookworms. PLoS Negl Trop Dis 6(11):e1900. doi:10.1371/journal.pntd.0001900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imamura K, Takeuchi H, Yabe R, Tateno H, Hirabayashi J (2011) Engineering of the Glycan-binding Specificity of Agrocybe cylindracea Galectin toward {alpha}(2,3)-linked Sialic Acid by Saturation Mutagenesis. J Biochem 150(5):545–52

    Article  PubMed  CAS  Google Scholar 

  • Inbar J, Chet I (1994) A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: purification, characterization and role in mycoparasitism. Microbiology 140(Pt 3):651–7

    Article  PubMed  CAS  Google Scholar 

  • Jaber K, Paquereau L, Fournier D, Haubruge E, Francis F (2006) Use of artificial diet system to assess the potential bio-insecticide effect of a fungal lectin from Xerocomus chrysenteron (XCL) on Myzus persicae. Commun Agric Appl Biol Sci 71(2 Pt B):497–505

    PubMed  CAS  Google Scholar 

  • Jaber K, Francis F, Paquereau L, Fournier D, Haubruge E (2007) Effect of a fungal lectin from Xerocomus chrysenteron (XCL) on the biological parameters of aphids. Commun Agric Appl Biol Sci 72(3):629–38

    PubMed  CAS  Google Scholar 

  • Jaber K, Cuartero Diaz G, Haubruge E, Francis F (2008) Investigation of carbohydrate binding property of a fungal lectin from Xerocomus chrysenteron and potential use on Myzus persicae aphid. Commun Agric Appl Biol Sci 73(3):629–38

    PubMed  CAS  Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–61. doi:10.1111/mpp.12057

    Article  PubMed  Google Scholar 

  • Kadirvelraj R, Grant OC, Goldstein IJ, Winter HC, Tateno H, Fadda E, Woods RJ (2011) Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc human-type influenza receptor. Glycobiology 21(7):973–84. doi:10.1093/glycob/cwr030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellens JTC, Peumans W (1990) Developmental accumulation of lectin in Rhizoctonia solani: a potential role as a storage protein. J Gen Microbiol 136:2489–2495

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kawagishi H (2014) Fungal lectins: a growing family. Methods Mol Biol 1200:15–38. doi:10.1007/978-1-4939-1292-6_2

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Tateno H, Dohra H, Moriwaki K, Miyoshi E, Hirabayashi J, Kawagishi H (2012) A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J Biol Chem 287(41):33973–82. doi:10.1074/jbc.M111.327692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kochibe N, Furukawa K (1980) Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 19(13):2841–6

    Article  PubMed  CAS  Google Scholar 

  • Koharudin LM, Viscomi AR, Jee JG, Ottonello S, Gronenborn AM (2008) The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity. Structure 16(4):570–84. doi:10.1016/j.str.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Iwahara A, Yanai H (2005) Inhibitor-assisted refolding of protease: a protease inhibitor as an intramolecular chaperone. FEBS Lett 579(20):4430–6. doi:10.1016/j.febslet.2005.06.083

    Article  PubMed  CAS  Google Scholar 

  • Kristan KC, Viero G, Dalla Serra M, Macek P, Anderluh G (2009) Molecular mechanism of pore formation by actinoporins. Toxicon 54(8):1125–34. doi:10.1016/j.toxicon.2009.02.026

    Article  PubMed  CAS  Google Scholar 

  • Künzler M (2015) Hitting the sweet spot: glycans as targets of fungal defense effector proteins. Molecules 20(5):8144–8167. doi:10.3390/molecules20058144

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara N, Hu D, Tateno H, Makyio H, Hirabayashi J, Kato R (2013) Conformational change of a unique sequence in a fungal galectin from Agrocybe cylindracea controls glycan ligand-binding specificity. FEBS Lett doi:10.1016/j.febslet.2013.08.046

  • Lacadena J, Alvarez-Garcia E, Carreras-Sangra N, Herrero-Galan E, Alegre-Cebollada J, Garcia-Ortega L, Onaderra M, Gavilanes JG, Martinez del Pozo A (2007) Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 31(2):212–37. doi:10.1111/j.1574-6976.2006.00063.x

    Article  PubMed  CAS  Google Scholar 

  • LeJambre LF, Windon RG, Smith WD (2008) Vaccination against Haemonchus contortus: performance of native parasite gut membrane glycoproteins in Merino lambs grazing contaminated pasture. Vet Parasitol 153(3–4):302–12. doi:10.1016/j.vetpar.2008.01.032

    Article  PubMed  CAS  Google Scholar 

  • Leonidas DD, Swamy BM, Hatzopoulos GN, Gonchigar SJ, Chachadi VB, Inamdar SR, Zographos SE, Oikonomakos NG (2007) Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J Mol Biol 368(4):1145–61. doi:10.1016/j.jmb.2007.02.092

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhao X, Xu XC, Li LR, Liu YH, Zhong SD, Bao JK (2008) Hemagglutinating activity and conformation of a lactose-binding lectin from mushroom Agrocybe cylindracea. Int J Biol Macromol 42(2):138–44. doi:10.1016/j.ijbiomac.2007.10.017

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: Multifunctional Enzymes in Life and Disease. J Biol Chem 283(45):30433–30437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H (2010) Opposing developmental functions of Agrocybe aegerita galectin (AAL) during mycelia differentiation. Fungal Biol 114(8):599–608. doi:10.1016/j.funbio.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  • Mancheno JM, Tateno H, Goldstein IJ, Martinez-Ripoll M, Hermoso JA (2005) Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J Biol Chem 280(17):17251–9. doi:10.1074/jbc.M413933200

    Article  PubMed  CAS  Google Scholar 

  • Mancheno JM, Tateno H, Sher D, Goldstein IJ (2010) Laetiporus sulphureus lectin and aerolysin protein family. Adv Exp Med Biol 677:67–80

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183):88–92. doi:10.1038/nature06556

    Article  PubMed  CAS  Google Scholar 

  • Marty-Detraves C, Francis F, Baricault L, Fournier D, Paquereau L (2004) Inhibitory action of a new lectin from Xerocomus chrysenteron on cell-substrate adhesion. Mol Cell Biochem 258(1–2):49–55

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Higashida K, Hata Y, Kominami J, Nakamura-Tsuruta S, Hirabayashi J (2008) Comparative analysis of oligosaccharide specificities of fucose-specific lectins from Aspergillus oryzae and Aleuria aurantia using frontal affinity chromatography. Anal Biochem doi:10.1016/j.ab.2008.11.044

  • Mo H, Winter HC, Goldstein IJ (2000) Purification and characterization of a Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J Biol Chem 275(14):10623–9

    Article  PubMed  CAS  Google Scholar 

  • Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U (2012) Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol 29(9):2223–30. doi:10.1093/molbev/mss089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munn EA (1997) Rational design of nematode vaccines: hidden antigens. Int J Parasitol 27(4):359–66

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Yamashita M, Honda H, Akabane J, Uehara K, Saito A, Sumisa F, Nishibori K, Oodaira Y (2005) Characterization, occurrence, and molecular cloning of a lectin from Grifola frondosa: jacalin-related lectin of fungal origin. Biosci Biotechnol Biochem 69(12):2374–80. doi:10.1271/bbb.69.2374

    Article  PubMed  CAS  Google Scholar 

  • Nakamura-Tsuruta S, Kominami J, Kuno A, Hirabayashi J (2006) Evidence that Agaricus bisporus agglutinin (ABA) has dual sugar-binding specificity. Biochem Biophys Res Commun 347(1):215–220

    Article  PubMed  CAS  Google Scholar 

  • Nowrousian M, Cebula P (2005) The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiol 5:64. doi:10.1186/1471-2180-5-64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oda Y, Senaha T, Matsuno Y, Nakajima K, Naka R, Kinoshita M, Honda E, Furuta I, Kakehi K (2003) A new fungal lectin recognizing alpha(1–6)-linked fucose in the N-glycan. J Biol Chem 278(34):32439–47. doi:10.1074/jbc.M305181200

    Article  PubMed  CAS  Google Scholar 

  • Odani S, Tominaga K, Kondou S, Hori H, Koide T, Hara S, Isemura M, Tsunasawa S (1999) The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes. Eur J Biochem 262(3):915–23

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Nakajima E, Nagao H, Ohtoshi M, Ando A, Nagata Y (1998) Synthesis of a lectin in both mycelia and fruit bodies of the ascomycete mushroom Aleuria aurantia. Biosci Biotechnol Biochem 62(5):915–918. doi:10.1271/Bbb.62.915

    Article  CAS  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kues U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HA (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–63. doi:10.1038/nbt.1643

    Article  PubMed  CAS  Google Scholar 

  • Olausson J, Tibell L, Jonsson BH, Pahlsson P (2008) Detection of a high affinity binding site in recombinant Aleuria aurantia lectin. Glycoconj J 25(8):753–62. doi:10.1007/s10719-008-9135-7

    Article  PubMed  CAS  Google Scholar 

  • Olausson J, Astrom E, Jonsson BH, Tibell LA, Pahlsson P (2010) Production and characterization of a monomeric and a single site form of Aleuria aurantia lectin. Glycobiology 21(1):34–44. doi:10.1093/glycob/cwq129

    Article  PubMed  CAS  Google Scholar 

  • Ota K, Butala M, Viero G, Dalla Serra M, Sepcic K, Macek P (2014) Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins? Subcell Biochem 80:271–91. doi:10.1007/978-94-017-8881-6_14

    Article  PubMed  CAS  Google Scholar 

  • Paaventhan P, Joseph JS, Seow SV, Vaday S, Robinson H, Chua KY, Kolatkar PR (2003) A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol 332(2):461–70

    Article  PubMed  CAS  Google Scholar 

  • Paschinger K, Wilson IB (2015) Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus. Glycobiology 25(6):585–90. doi:10.1093/glycob/cwv015

    Article  PubMed  Google Scholar 

  • Paschinger K, Rendic D, Wilson IB (2009) Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconj J 26(3):385–95. doi:10.1007/s10719-008-9155-3

    Article  PubMed  CAS  Google Scholar 

  • Paschinger K, Razzazi-Fazeli E, Furukawa K, Wilson IB (2011) Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica. J Mass Spectrom 46(6):561–7. doi:10.1002/jms.1925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJ (1995) Lectins as plant defense proteins. Plant Physiol 109(2):347–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peumans WJ, Fouquaert E, Jauneau A, Rouge P, Lannoo N, Hamada H, Alvarez R, Devreese B, Van Damme EJ (2007) The liverwort Marchantia polymorpha expresses orthologs of the fungal Agaricus bisporus agglutinin family. Plant Physiol 144(2):637–47. doi:10.1104/pp. 106.087437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plaza DF, Lin CW, van der Velden NS, Aebi M, Künzler M (2014) Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics 15:492. doi:10.1186/1471-2164-15-492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pohleven J, Obermajer N, Sabotič J, Anžlovar S, Sepčić K, Kos J, Kralj B, Štrukelj B, Brzin J (2009) Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta Gen Subj 1790(3):173–181. doi:10.1016/j.bbagen.2008.11.006

    Article  CAS  Google Scholar 

  • Pohleven J, Brzin J, Vrabec L, Leonardi A, Cokl A, Strukelj B, Kos J, Sabotič J (2011) Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Appl Microbiol Biotechnol 91(4):1141–8. doi:10.1007/s00253-011-3236-0

    Article  PubMed  CAS  Google Scholar 

  • Pohleven J, Renko M, Magister S, Smith DF, Künzler M, Strukelj B, Turk D, Kos J, Sabotič J (2012) Bivalent carbohydrate binding is required for biological activity of Clitocybe nebularis lectin (CNL), the N, N’-diacetyllactosediamine (GalNAcbeta1-4GlcNAc, LacdiNAc)-specific lectin from basidiomycete C. nebularis. J Biol Chem 287(13):10602–12. doi:10.1074/jbc.M111.317263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Presant CA, Kornfeld S (1972) Characterization of the cell surface receptor for the Agaricus bisporus hemagglutinin. J Biol Chem 247(21):6937–45

    PubMed  CAS  Google Scholar 

  • Rabinovich GA, Toscano MA, Jackson SS, Vasta GR (2007) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17(5):513–20. doi:10.1016/j.sbi.2007.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42(Database issue):D503–9. doi:10.1093/nar/gkt953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rempel BP, Winter HC, Goldstein IJ, Hindsgaul O (2002) Characterization of the recognition of blood group B trisaccharide derivatives by the lectin from Marasmius oreades using frontal affinity chromatography-mass spectrometry. Glycoconj J 19(3):175–80. doi:10.1023/A:1024297623445

    Article  PubMed  CAS  Google Scholar 

  • Renko M, Sabotič J, Mihelič M, Brzin J, Kos J, Turk D (2010) Versatile loops in mycocypins inhibit three protease families. J Biol Chem 285(1):308–16. doi:10.1074/jbc.M109.043331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renko M, Sabotič J, Turk D (2012) β-Trefoil inhibitors—from the work of Kunitz onward. Biol Chem 393(10):1043. doi:10.1515/hsz-2012-0159

    Article  PubMed  CAS  Google Scholar 

  • Rosen S, Ek B, Rask L, Tunlid A (1992) Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 138(12):2663–72

    Article  PubMed  CAS  Google Scholar 

  • Rosen S, Bergstrom J, Karlsson KA, Tunlid A (1996a) A multispecific saline-soluble lectin from the parasitic fungus Arthrobotrys oligospora—similarities in the binding specificities compared with a lectin from the mushroom Agaricus bisporus. Eur J Biochem 238(3):830–837. doi:10.1111/j.1432-1033.1996.0830w.x

    Article  PubMed  CAS  Google Scholar 

  • Rosen S, Kata M, Persson Y, Lipniunas PH, Wikstrom M, Van Den Hondel CAMJJ, Van Den Brink JM, Rask L, Heden LO, Tunlid A (1996b) Molecular characterization of a saline-soluble lectin from a parasitic fungus—extensive sequence similarities between fungal lectins. Eur J Biochem 238(3):822–829. doi:10.1111/j.1432-1033.1996.0822w.x

    Article  PubMed  CAS  Google Scholar 

  • Rosen S, Sjollema K, Veenhuis M, Tunlid A (1997) A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiol-Uk 143:2593–2604

    Article  CAS  Google Scholar 

  • Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors—current and potential applications. Appl Microbiol Biotechnol 93(4):1351–75. doi:10.1007/s00253-011-3834-x

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Gaser D, Rogelj B, Gruden K, Štrukelj B, Brzin J (2006) Heterogeneity in the cysteine protease inhibitor clitocypin gene family. Biol Chem 387(12):1559–1566. doi:10.1515/bc.2006.194

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Galeša K, Popovič T, Leonardi A, Brzin J (2007a) Comparison of natural and recombinant clitocypins, the fungal cysteine protease inhibitors. Protein Expr Purif 53(1):104–111. doi:10.1016/j.pep.2006.11.015

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Trček T, Popovič T, Brzin J (2007b) Basidiomycetes harbour a hidden treasure of proteolytic diversity. J Biotechnol 128(2):297–307. doi:10.1016/j.jbiotec.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Popovič T, Puizdar V, Brzin J (2009) Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J 276(16):4334–45. doi:10.1111/j.1742-4658.2009.07138.x

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Kilaru S, Budič M, Gašparič Buh M, Gruden K, Bailey AM, Foster GD, Kos J (2011) Protease inhibitors clitocypin and macrocypin are differentially expressed within basidiomycete fruiting bodies. Biochimie 93(10):1685–93. doi:10.1016/j.biochi.2011.05.034

    Article  PubMed  CAS  Google Scholar 

  • Sabotič J, Bleuler-Martinez S, Renko M, Avanzo Caglič P, Kallert S, Štrukelj B, Turk D, Aebi M, Kos J, Künzler M (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J Biol Chem 287(6):3898–907. doi:10.1074/jbc.M111.285304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasakawa H, Yoshinaga S, Kojima S, Tamura A (2002) Structure of POIA1, a homologous protein to the propeptide of subtilisin: implication for protein foldability and the function as an intramolecular chaperone. J Mol Biol 317(1):159–67. doi:10.1006/jmbi.2002.5412

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Bleuler-Martinez S, Butschi A, Wälti MA, Egloff P, Stutz K, Yan S, Wilson IBH, Hengartner MO, Aebi M, Allain FHT, Künzler M (2012) Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog 8(5):e1002706. doi:10.1371/journal.ppat.1002706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11):53R–62R. doi:10.1093/glycob/cwh122

    Article  PubMed  CAS  Google Scholar 

  • Shi XZ, Wang L, Xu S, Zhang XW, Zhao XF, Vasta GR, Wang JX (2014) A galectin from the kuruma shrimp (Marsupenaeus japonicus) functions as an opsonin and promotes bacterial clearance from hemolymph. PLoS One 9(3):e91794. doi:10.1371/journal.pone.0091794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimokawa M, Fukudome A, Yamashita R, Minami Y, Yagi F, Tateno H, Hirabayashi J (2012) Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj J 29(7):457–65. doi:10.1007/s10719-012-9401-6

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Hasegawa Y, Kaku H, Shibuya N (1997) Elucidation of the mechanism enhancing the avidity of lectin with oligosaccharides on the solid phase surface. Glycobiology 7(8):1201–8

    Article  PubMed  CAS  Google Scholar 

  • Skamnaki VT, Peumans WJ, Kantsadi AL, Cubeta MA, Plas K, Pakala S, Zographos SE, Smagghe G, Nierman WC, Van Damme EJ, Leonidas DD (2013) Structural analysis of the Rhizoctonia solani agglutinin reveals a domain-swapping dimeric assembly. FEBS J 280(8):1750–63. doi:10.1111/febs.12190

    Article  PubMed  CAS  Google Scholar 

  • Šmid I, Gruden K, Buh Gašparič M, Koruza K, Petek M, Pohleven J, Brzin J, Kos J, Žel J, Sabotič J (2013) Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. J Agric Food Chem 61(51):12499–509. doi:10.1021/jf403615f

    Article  PubMed  CAS  Google Scholar 

  • Šmid I, Rotter A, Gruden K, Brzin J, Buh Gašparič M, Kos J, Žel J, Sabotič J (2015) Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic Biochem Physiol 122:59–66. doi:10.1016/j.pestbp.2014.12.022

    Article  PubMed  CAS  Google Scholar 

  • Spiteller P (2015) Chemical ecology of fungi. Nat Prod Rep 32(7):971–993. doi:10.1039/c4np00166d

    Article  PubMed  CAS  Google Scholar 

  • Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW, Borodovsky M, Burns C, Canback B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigo R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kues U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma LJ, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107(26):11889–94. doi:10.1073/pnas.1003391107

    Article  PubMed  PubMed Central  Google Scholar 

  • Stutz K, Kaech A, Aebi M, Künzler M, Hengartner MO (2015) Disruption of the C. elegans intestinal brush border by the fungal lectin CCL2 phenocopies dietary lectin toxicity in mammals. PLoS One 10(6):e0129381. doi:10.1371/journal.pone.0129381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudakevitz D, Imberty A, Gilboa-Garber N (2002) Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins. J Biochem 132(2):353–8

    Article  PubMed  CAS  Google Scholar 

  • Sulzenbacher G, Roig-Zamboni V, Peumans WJ, Rouge P, Van Damme EJ, Bourne Y (2010) Crystal structure of the GalNAc/Gal-specific agglutinin from the phytopathogenic ascomycete Sclerotinia sclerotiorum reveals novel adaptation of a beta-trefoil domain. J Mol Biol 400(4):715–23. doi:10.1016/j.jmb.2010.05.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki T, Sugiyama K, Hirai H, Ito H, Morita T, Dohra H, Murata T, Usui T, Tateno H, Hirabayashi J, Kobayashi Y, Kawagishi H (2012) Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 22(5):616–29. doi:10.1093/glycob/cwr187

    Article  PubMed  CAS  Google Scholar 

  • Swamy BM, Bhat AG, Hegde GV, Naik RS, Kulkarni S, Inamdar SR (2004) Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14(11):951–7. doi:10.1093/glycob/cwh130

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Goldstein IJ (2003) Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins. J Biol Chem 278(42):40455–63. doi:10.1074/jbc.M306836200

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Goldstein IJ (2004) Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch Biochem Biophys 427(1):101–9. doi:10.1016/j.abb.2004.04.013

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Winter HC, Goldstein IJ (2004) Cloning, expression in Escherichia coli and characterization of the recombinant Neu5Acalpha2,6Galbeta1,4GlcNAc-specific high-affinity lectin and its mutants from the mushroom Polyporus squamosus. Biochem J 382(Pt 2):667–75. doi:10.1042/BJ20040391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19(5):527–36. doi:10.1093/glycob/cwp016

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Ellison CE (2010) Mushrooms: morphological complexity in the fungi. Proc Natl Acad Sci U S A 107(26):11655–6. doi:10.1073/pnas.1006430107

    Article  PubMed  PubMed Central  Google Scholar 

  • Teichert I, Nowrousian M, Poggeler S, Kuck U (2014) The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. Adv Genet 87:199–244. doi:10.1016/B978-0-12-800149-3.00004-4

    Article  PubMed  Google Scholar 

  • Terra WR, Ferreira C (2005) 4.5—Biochemistry of digestion. In: Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive Molecular Insect Science. Elsevier, Amsterdam, pp 171–224

    Chapter  Google Scholar 

  • Tian Y, Zhang K (2005) Purification and characteristic of proteinase inhibitor GLPIA2 from Ganoderma lucidum by submerged fermentation. Se Pu 23(3):267–9

    PubMed  CAS  Google Scholar 

  • Titz A, Butschi A, Henrissat B, Fan YY, Hennet T, Razzazi-Fazeli E, Hengartner MO, Wilson IB, Künzler M, Aebi M (2009) Molecular basis for galactosylation of core fucose residues in invertebrates: identification of Caenorhabditis elegans N-glycan core {alpha}1,6-fucoside {beta}1,4-galactosyltransferase GALT-1 as a member of a novel glycosyltransferase family. J Biol Chem 284(52):36223–33. doi:10.1074/jbc.M109.058354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trigueros V, Lougarre A, Ali-Ahmed D, Rahbe Y, Guillot J, Chavant L, Fournier D, Paquereau L (2003) Xerocomus chrysenteron lectin: identification of a new pesticidal protein. Biochim Biophys Acta 1621(3):292–8

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Kojima K, Saitoh T, Ogawa H (1999a) Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid. FEBS Lett 448(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Saitoh T, Kojima K, Ogawa H (1999b) Multi-specificity of a Psathyrella velutina mushroom lectin: heparin/pectin binding occurs at a site different from the N-acetylglucosamine/N-acetylneuraminic acid-specific site. J Biochem 126(3):530–7

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Matsumoto H, Takahashi N, Ogawa H (2002) Psathyrella velutina mushroom lectin exhibits high affinity toward sialoglycoproteins possessing terminal N-acetylneuraminic acid alpha 2,3-linked to penultimate galactose residues of trisialyl N-glycans. comparison with other sialic acid-specific lectins. J Biol Chem 277(28):24916–25. doi:10.1074/jbc.M110727200

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Takahashi N, Ogawa H (2003) Psathyrella velutina lectin as a specific probe for N-acetylneuraminic acid in glycoconjugates. Methods Enzymol 363:77–90. doi:10.1016/S0076-6879(03)01044-9

    Article  PubMed  CAS  Google Scholar 

  • Urban JF Jr, Hu Y, Miller MM, Scheib U, Yiu YY, Aroian RV (2013) Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. PLoS Negl Trop Dis 7(6):e2263. doi:10.1371/journal.pntd.0002263

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Damme EJ, Nakamura-Tsuruta S, Hirabayashi J, Rouge P, Peumans WJ (2007) The Sclerotinia sclerotiorum agglutinin represents a novel family of fungal lectins remotely related to the Clostridium botulinum non-toxin haemagglutinin HA33/A. Glycoconj J 24(2–3):143–56. doi:10.1007/s10719-006-9022-z

    Article  PubMed  CAS  Google Scholar 

  • Varki A (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y

    Google Scholar 

  • Varrot A, Basheer SM, Imberty A (2013) Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 23(5):678–85. doi:10.1016/j.sbi.2013.07.007

    Article  PubMed  CAS  Google Scholar 

  • Vetter J (2000) Trypsin inhibitory activity of basidiomycetous mushrooms. Eur Food Res Technol 211:346–348

    Article  CAS  Google Scholar 

  • Vishwanathreddy H, Bhat GG, Inamdar SR, Gudihal RK, Swamy BM (2014) Sclerotium rolfsii lectin exerts insecticidal activity on Spodoptera litura larvae by binding to membrane proteins of midgut epithelial cells and triggering caspase-3-dependent apoptosis. Toxicon 78:47–57. doi:10.1016/j.toxicon.2013.11.012

    Article  CAS  Google Scholar 

  • Walser PJ, Haebel PW, Künzler M, Sargent D, Kues U, Aebi M, Ban N (2004) Structure and functional analysis of the fungal galectin CGL2. Structure 12(4):689–702. doi:10.1016/j.str.2004.03.002

    Article  PubMed  CAS  Google Scholar 

  • Walski T, Van Damme EJ, Smagghe G (2014) Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. J Insect Physiol 70:94–101. doi:10.1016/j.jinsphys.2014.09.004

    Article  PubMed  CAS  Google Scholar 

  • Walti MA, Walser PJ, Thore S, Grunler A, Bednar M, Künzler M, Aebi M (2008) Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from Coprinopsis cinerea. J Mol Biol 379(1):146–59. doi:10.1016/j.jmb.2008.03.062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HX, Ng TB, Ooi VEC (1998) Lectins from mushrooms. Mycol Res 102:897–906

    Article  CAS  Google Scholar 

  • Wang M, Trigueros V, Paquereau L, Chavant L, Fournier D (2002) Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J Econ Entomol 95(3):603–7

    Article  PubMed  CAS  Google Scholar 

  • Wimmerova M, Mitchell E, Sanchez JF, Gautier C, Imberty A (2003) Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278(29):27059–67. doi:10.1074/jbc.M302642200

    Article  PubMed  CAS  Google Scholar 

  • Winter HC, Mostafapour K, Goldstein IJ (2002) The mushroom Marasmius oreades lectin is a blood group type B agglutinin that recognizes the Galalpha 1,3Gal and Galalpha 1,3Galbeta 1,4GlcNAc porcine xenotransplantation epitopes with high affinity. J Biol Chem 277(17):14996–5001. doi:10.1074/jbc.M200161200

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M (2011) Nematotoxicity of Marasmius Oreades agglutinin (MOA) depends on glycolipid-binding and cysteine protease activity. J Biol Chem 286:30337–43. doi:10.1074/jbc.M111.258202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wohlschlager T, Butschi A, Grassi P, Sutov G, Gauss R, Hauck D, Schmieder SS, Knobel M, Titz A, Dell A, Haslam SM, Hengartner MO, Aebi M, Künzler M (2014) Methylated glycans as conserved targets of animal and fungal innate defense. Proc Natl Acad Sci U S A 111(27):E2787–96. doi:10.1073/pnas.1401176111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong JH, Ng TB, Cheung RC, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PH, Xia LX, Ye XY, Jiang Y, Liu F (2010) Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 87(4):1221–35. doi:10.1007/s00253-010-2690-4

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Yan H, Chen J, Zhang X (2011) Bioactive proteins from mushrooms. Biotechnol Adv 29(6):667–74. doi:10.1016/j.biotechadv.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  • Yagi F, Miyamoto M, Abe T, Minami Y, Tadera K, Goldstein IJ (1997) Purification and carbohydrate-binding specificity of Agrocybe cylindracea lectin. Glycoconj J 14(2):281–8

    Article  PubMed  CAS  Google Scholar 

  • Yagi F, Hiroyama H, Kodama S (2001) Agrocybe cylindracea lectin is a member of the galectin family. Glycoconj J 18(10):745–9

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Bleuler-Martinez S, Plaza Gutierrez DF, Künzler M, Aebi M, Joachim A, Razzazi-Fazeli E, Jantsch V, Geyer R, Wilson IB, Paschinger K (2012) Galactosylated fucose epitopes in nematodes: increased expression in a Caenorhabditis mutant associated with altered lectin sensitivity and occurrence in parasitic species. J Biol Chem doi:10.1074/jbc.M112.353128

  • Yan S, Brecker L, Jin C, Titz A, Dragosits M, Karlsson N, Jantsch V, Wilson IB, Paschinger K (2015) Bisecting galactose as a feature of N-glycans of wild-type and mutant Caenorhabditis elegans. Mol Cell Proteomics 14(8):2111–25. doi:10.1074/mcp.M115.049817

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Liang Y, Xiang Y, Zhang Y, Sun H, Wang DC (2005a) Crystallization and preliminary crystallographic studies of an antitumour lectin from the edible mushroom Agrocybe aegerita. Protein Pept Lett 12(7):705–7

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Tong X, Xiang Y, Zhang Y, Liang Y, Sun H, Wang DC (2005b) Molecular character of the recombinant antitumor lectin from the edible mushroom Agrocybe aegerita. J Biochem 138(2):145–50. doi:10.1093/jb/mvi109

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Tong X, Xiang Y, Zhang Y, Sun H, Wang DC (2005c) Crystallization and preliminary crystallographic studies of the recombinant antitumour lectin from the edible mushroom Agrocybe aegerita. Biochim Biophys Acta 1751(2):209–12. doi:10.1016/j.bbapap.2005.06.003

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Li DF, Feng L, Xiang Y, Liu W, Sun H, Wang DC (2009) Structural basis for the tumor cell apoptosis-inducing activity of an antitumor lectin from the edible mushroom Agrocybe aegerita. J Mol Biol 387(3):694–705. doi:10.1016/j.jmb.2009.02.002

    Article  PubMed  CAS  Google Scholar 

  • Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25(3):315–31

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yin Y, Yu G, Chen Y, Jiang S, Wang M, Jin Y, Lan X, Liang Y, Sun H (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One 7(12):e51853. doi:10.1371/journal.pone.0051853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu L, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53(19):4627–32

    PubMed  CAS  Google Scholar 

  • Yu LG, Fernig DG, White MR, Spiller DG, Appleton P, Evans RC, Grierson I, Smith JA, Davies H, Gerasimenko OV, Petersen OH, Milton JD, Rhodes JM (1999) Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J Biol Chem 274(8):4890–9

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Palcic MM, Mo H, Goldstein IJ, Hindsgaul O (2001) Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrometry. Glycobiology 11(2):141–7

    Article  PubMed  Google Scholar 

  • Zhang GQ, Zhang QP, Sun Y, Tian YP, Zhou ND (2012) Purification of a novel pepsin inhibitor from Coriolus versicolor and its biochemical properties. J Food Sci 77(3):C293–7. doi:10.1111/j.1750-3841.2011.02581.x

    Article  PubMed  CAS  Google Scholar 

  • Zuchowski J, Grzywnowicz K (2006) Partial purification of proteinase K inhibitors from liquid-cultured mycelia of the white rot basidiomycete Trametes versicolor. Curr Microbiol 53(4):259–64

    Article  PubMed  CAS  Google Scholar 

  • Zuchowski J, Jaszek M, Grzywnowicz K (2009) Novel trypsin inhibitors from the white rot fungus Abortiporus biennis. Partial purification and characterization. Biochemistry (Mosc) 74(2):226–30

    Article  CAS  Google Scholar 

  • Žurga S, Pohleven J, Renko M, Bleuler-Martínez S, Sosnowski P, Turk D, Künzler M, Kos J, Sabotič J (2014) A novel beta-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. FEBS J 281:3489–3506. doi:10.1111/febs.12875

    Article  PubMed  CAS  Google Scholar 

  • Žurga S, Pohleven J, Kos J, Sabotič J (2015) beta-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J Biochem 158(1):83–90. doi:10.1093/jb/mvv025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to apologize to all the people whose work could not be cited due to space limitations of this review. We are grateful to Dr. Roger H. Pain for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerica Sabotič.

Ethics declarations

Funding

The work of MK is supported by grants of the Swiss National Science Foundation (Grant No. 31003A_149512) and ETH Zürich (Grant No. ETH-34 11–2). The work of JS is supported by Slovenian Research Agency (Grant No. P4-0127).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 148 kb)

ESM 2

(XLSX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabotič, J., Ohm, R.A. & Künzler, M. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 100, 91–111 (2016). https://doi.org/10.1007/s00253-015-7075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7075-2

Keywords

Navigation