Skip to main content
Log in

Design and preparation of quantum dots fluorescent probes for in situ identification of Microthrix parvicella in bulking sludge

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A series of quantum dots (QDs) fluorescent probes for the in situ identification of Microthrix parvicella (M. parvicella) in bulking sludge were designed and prepared. In the preparation of CdTe/CdS QDs, the 11-mercaptoundecanoic acid (11-acid) and 16-mercaptohexadecanoic acid (16-acid) were used as the stabilizer. The prepared QDs probes were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the results showed that the CdTe/CdS QDs formed a core-shell structure and the long carbon chain was successfully grafted onto its surface. And the three QDs probes had different crystallinity and particle size, which was due to the inhibition effect of long carbon chain. The optical properties test results showed that although the formed core-shell structure and long carbon chain affected the fluorescent intensity, adsorption, and emission spectra of the QDs probes, the probes B and C had a large stokes-shift of 82 and 101 nm, which was a benefit for their fluorescent labeling property. In the fluorescent identification of M. parvicella, the probes B and C effectively adsorbed onto the surface of M. parvicella through a hydrophobic bond, and then identified M. parvicella by their unique fluorescence. In addition, it was found that a better hydrophobic property resulted in better identification efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  PubMed  CAS  Google Scholar 

  • Araújo DSL, Ferreira V, Neto MM, Pereira MA, Mota M, Nicolau A (2015) Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters. Appl Microbiol Biot 99(12):5307–5316

    Article  CAS  Google Scholar 

  • Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106

    Article  PubMed  CAS  Google Scholar 

  • Blackall LL, Harbers AE, Greenfield PF, Hayward AC (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20(11–12):493–495

    CAS  Google Scholar 

  • Blackall LL, Seviour EM, Cunningham MA, Seviour RJ, Hugenholtz P (1995) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 17(4):513–518

    Article  Google Scholar 

  • Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46(1):344–346

    Article  PubMed  CAS  Google Scholar 

  • Blackman B, Battaglia DM, Mishima TD, Johnson MB, Peng X (2007) Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling. Chem Mater 19(15):3815–3821

    Article  CAS  Google Scholar 

  • Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mat 20(15):4847–4853

    Article  CAS  Google Scholar 

  • Chattopadhyay PK, Price D, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972–977

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rosenzweig Z, Chem A (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138

    Article  PubMed  CAS  Google Scholar 

  • de los Reyes FL, Rothauszky D, Raskin L (2002) Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. Water Environ Res 74(5):437–449(13)

    Article  PubMed  Google Scholar 

  • Dong W, Guo L, Wang M, Xu S (2009) CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging. J Lumin 129(9):926–930

    Article  CAS  Google Scholar 

  • Eikelboom DH, Van Buijsen HJJ (1983) Microscopic sludge investigation manual. TNO Research Institute of Environmental Hygiene, Delft

    Google Scholar 

  • Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in-situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Sys Appl Microbiol 20(2):310–318

    Article  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  PubMed  CAS  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185

    Article  CAS  Google Scholar 

  • Gui R, An X (2013) Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission. RSC Adv 3:20959–20969

    Article  CAS  Google Scholar 

  • Hamit-Eminovski J, Eskilsson K, Arnebrant T (2010) Change in surface properties of Microthrix parvicella upon addition of polyaluminium chloride as characterized by atomic force microscopy. Bioremediat J 26(3):323–331

    Google Scholar 

  • Haobo Bao YG, Zhen L, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16(50):3853–3859

    Google Scholar 

  • Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000) Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater Sci Eng B 69(70):355–360

    Article  Google Scholar 

  • He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110(27):13370–13374

    Article  PubMed  CAS  Google Scholar 

  • Idowu M, Chen JY, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32(2):290–296

    Article  CAS  Google Scholar 

  • Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming, 2 edn. Lewis

  • Kim S, Lim YT, Soltesz EG, Grand AMD, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari SKS, Marrengane Z, Bux F (2009) Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biot 83(6):1135–1141

    Article  CAS  Google Scholar 

  • Lienen T, Kleyböcker A, Verstraete W, Würdemann H (2014) Foam formation in a downstream digester of a cascade running full-scale biogas plant: influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresource Technol 153(2):1–7

    Article  CAS  Google Scholar 

  • Limpiyakorn T, Kurisu F, Yagi O (2006) Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems. Appl Microbiol Biot 72(5):1004–1013

    Article  CAS  Google Scholar 

  • Martins AMP, Pagilla K, Heijnen JJ, Loosdrecht MCMV (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817

    Article  PubMed  CAS  Google Scholar 

  • Mcilroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH (2013) Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses. ISME J 7(6):1161–1172

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  PubMed  CAS  Google Scholar 

  • Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “Greener” chemical approaches. J Physl Chem B 107(30):7454–7462

    Article  CAS  Google Scholar 

  • Nielsen PHRP, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46(1–2):73–80

    PubMed  CAS  Google Scholar 

  • Pan D, Wang Q, Jiang S, Ji X, An L (2005) Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core–shell nanocrystals via a novel two-phase thermal approach. Adv Mater 17(2):176–179

    Article  Google Scholar 

  • Roels T, Dauwe F, Van DS, De WK, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46(1–2):487–490

    PubMed  CAS  Google Scholar 

  • Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mat Sci Eng B 69(70):435–440

    Article  Google Scholar 

  • Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmüller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsenges Phys Chem 100(11):1772–1778

    Article  CAS  Google Scholar 

  • Rossetti S, Christensson C, Blackall LL, Tandoi V (1997) Phenotypic and phylogenetic description of an Italian isolate of “Microthrix parvicella”. J Appl Microbiol 82(4):405–410

    Article  PubMed  CAS  Google Scholar 

  • Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. Fems Microbiol Rev 29(1):49–64

    Article  PubMed  CAS  Google Scholar 

  • Skourides P, Libchaber A, Norris DJ, Brivanlou AH, Noireaux V, Dubertret B (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Slijkhuis H (1983) Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46(4):832–839

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith AMGX, Nie S (2009) Quantum-dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80(3):377–385

    Article  Google Scholar 

  • Vanysacker L (2014) Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix. J Microbiol Met 97(2):6–14

    Article  CAS  Google Scholar 

  • Wanner JKC, Nielsen PH (2010) Microbiology of bulking. IWA Pubishing, London

    Google Scholar 

  • Westlund AD, Hagland E, Rothman M (1998) Operational aspects on foaming in digesters caused by Microthrix parvicella. Water Sci Technol 38(8):29–34(6)

    Article  CAS  Google Scholar 

  • Wu X (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Xu XH, Phongphonkit P, Ji HF (2011) A fluorescent sensor with a large stokes shift. Imag Sci Photochemi 29(5):364–371

    CAS  Google Scholar 

  • Zhang H, Zhou Z, Yang B (2002) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13

    Article  CAS  Google Scholar 

  • Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15(20):1712–1715

    Article  CAS  Google Scholar 

  • Zhang H, Sun P, Liu C, Gao H, Xu L, Fang J, Wang M, Liu J, Xu S (2011) L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence 26(2):86–92

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Han M, Dong Z, White TJ, Knoll W (2003) Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability. J Am Chem Soc 125(28):8589–8594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuening Fei or Lingyun Cao.

Ethics declarations

Funding

This research was financially supported by the National Natural Science Foundation of China (51178289).

Conflict of interest

The author Xuening Fei declares that he has no conflict of interest.

The author Lingyun Cao declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Sun, W., Cao, L. et al. Design and preparation of quantum dots fluorescent probes for in situ identification of Microthrix parvicella in bulking sludge. Appl Microbiol Biotechnol 100, 961–968 (2016). https://doi.org/10.1007/s00253-015-7015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7015-1

Keywords

Navigation