Skip to main content

Advertisement

Log in

Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of β-cypermethrin (β-CY; 50 mg L−1) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L−1) in 22 h. The half-lives of β-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of β-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of β-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. β-CY degradation products were analyzed. Results indicated that YAT strain transformed β-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansari RA, Rahman S, Kaur M, Anjum S, Raisuddin S (2011) In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicol Environ Saf 74:150–156

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K (2011a) Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour Technol 102:8110–8116

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-ul-Haq M, Han H (2011b) Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater 187:433–440

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yang L, Hu M, Liu J (2011c) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Geng P, Xiao Y, Hu M (2012a) Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94:505–515

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012b) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7:1–12

    CAS  Google Scholar 

  • Chen S, Hu W, Xiao Y, Deng Y, Jia J, Hu M (2012c) Degradation of 3-phenoxybenzoic acid by a Bacillus sp. PLoS One 7:1–12

    CAS  Google Scholar 

  • Cuthbertson AGS, Murchie AK (2010) Ecological benefits of Anystis baccarum in an orchard ecosystem and the need for its conservation. Int J Environ Sci Technol 7:807–813

    Article  Google Scholar 

  • Cuthbertson AGS, Blackburn LF, Northing P, Luo W, Cannon RJC, Walters KFA (2010) Chemical compatibility testing of the entomopathogenic fungus Lecanicillium muscarium to control Bemisia tabaci in glasshouse environment. Int J Environ Sci Technol 7:405–409

    Article  CAS  Google Scholar 

  • Dewailly E, Forde M, Robertson L, Kaddar N, Laouan SE, Cote S, Gaudreau E, Drescher O, Ayotte P (2014) Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries. Environ Int 63:201–206

    Article  CAS  PubMed  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10:244–267

    Article  Google Scholar 

  • Ding Y, White CA, Muralidhara S, Bruckner JV, Bartlett MG (2004) Determination of deltamethrin and its metabolite 3-phenoxybenzoic acid in male rat plasma by high-performance liquid chromatography. J Chromatogr B 810:221–227

    Article  CAS  Google Scholar 

  • Fortes C, Mastroeni S, Pilla MA, Antonelli G, Lunghini L, Aprea C (2013) The relation between dietary habits and urinary levels of 3-phenoxybenzoic acid a pyrethroid metabolite. Food Chem Toxicol 52:91–96

    Article  CAS  PubMed  Google Scholar 

  • Gaskin W, Guo HZ, Yin HJ, Xiong MD (2013) Identification and characterization of cotton genes involved in fuzz-fiber development. J Integr Plant Biol 57:619–630

    Google Scholar 

  • Gu X, Zhang G, Chen L, Dai R, Yu Y (2008) Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the Yangtze River Delta area. Environ Geochem. Health 30:67–77

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Wang B, Hang B, Li L, Ali SW, He J, Li S (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeterior Biodegrad 63:1107–1112

    Article  CAS  Google Scholar 

  • Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirosawa N, Ueyama J, Kondo T, Kamijima M, Takagi K, Fujinaka S, Hirate A, Hasegawa T, Wakusawa S (2011) Effect of DDVP on urinary excretion levels of pyrethroid metabolite 3-phenoxybenzoic acid in rats. Toxicol Lett 203:28–32

    Article  CAS  PubMed  Google Scholar 

  • Katsuda Y (1999) Development of and future prospects for pyrethroid chemistry. J Pestic Sci 55:775–782

    Article  CAS  Google Scholar 

  • Lavado R, Li J, Rimoldi JM, Schlenk D (2014) Evaluation of the stereoselective biotransformation of permethrin in human liver microsomes: contributions of cytochrome P450 monooxygenases to the formation of estrogenic metabolites. Toxicol Lett 226:192–197

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yao K, Jia D, Zhao N, Lai W, Yuan H (2012) A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. J Chromatogr Sci 50:469–476

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Chi Y, Wu S, Jia D, Yao K (2014) Simultaneous degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp. SC-1. J Agric Food Chem 7:8256–8262

    Article  Google Scholar 

  • Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4:4896–4906

    Article  CAS  Google Scholar 

  • Maloney SE, Maule A, Smith AR (1993) Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl Environ Microbiol 59:2007–2013

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCoy MR, Yang Z, Fu X, Ahn KC, Gee SJ, Bom DC, Zhong P, Chang D, Hammock BD (2012) Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. J Agric Food Chem 60:5065–5070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng X, Huang J, Liu C, Xiang Z, Zhou J, Zhong G (2012) Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain BP-H-02. J Hazard Mater 213-214:216–221

    Article  CAS  PubMed  Google Scholar 

  • Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT (2012) Degradation of terbuthylazine difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  PubMed  Google Scholar 

  • Ruan Z, Zhai Y, Song J, Shi Y, Li K, Zhao B, Yan Y (2013) Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One 8:1–7

    Google Scholar 

  • Saikia N, Das SK, Patel BK, Niwas R, Singh A, Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation 16:581–589

    Article  CAS  PubMed  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113:123–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla Y, Yadav A, Arora A (2002) Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett 182:33–41

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Chen W, Xu X, Ding Z, Chen X, Wang X (2014) Pyrethroid and their metabolite 3-phenoxybenzoic acid showed similar (anti) estrogenic activity in human and rat estrogen receptor α-mediated reporter gene assays. Environ Toxicol Pharmacol 37:371–377

    Article  CAS  PubMed  Google Scholar 

  • Tallur P, Megadi V, Ninnekar H (2008) Biodegradation of cypermethrin by Micrococcus sp strain CPN 1. Biodegradation 19:77–82

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Yao K, Liu S, Jia D, Chi Y, Zeng C, Wu S (2013) Biodegradation of 3-phenoxybenzoic acid by a novel Sphingomonas sp. SC-1. Fresenius Environ Bull 22:1564–1572

    CAS  Google Scholar 

  • Topp E, Akhtar MH (1991) Identification and characterization of a Pseudomonas strain capable of metabolizing phenoxybenzoates. Appl Environ Microbiol 57:1294–1300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, Chen F, Zhang Q, Fang Z (2009) Chronic toxicity and cytotoxicity of synthetic pyrethroid insecticide cis-bifenthrin. J Environ Sci 21:1710–1715

    Article  CAS  Google Scholar 

  • Xie W, Zhou J, Wang H, Chen X (2008) Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil. Pedosphere 18:638–644

    Article  CAS  Google Scholar 

  • Yu FB, Shan SD, Luo LP, Guan LB, Qin H (2013) Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B 48:198–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to the National Natural Science Foundation of China (31371775) for the financial support to this research.

Conflict of interest

We declare that no conflict of interest exists in the submission of this manuscript.

Ethical statement

All authors agreed to publish this manuscript. I would like to declare on behalf of my co-authors that this original work has not been previously published and is not under consideration for publication elsewhere, in whole or in part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuliang Liu.

Additional information

Weiqin Deng and Derong Lin contributed equally to this article.

Electronic supplementary material

ESM 1

(PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Lin, D., Yao, K. et al. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99, 8187–8198 (2015). https://doi.org/10.1007/s00253-015-6690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6690-2

Keywords

Navigation