Skip to main content
Log in

Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rapid global urbanization and other extensive anthropogenic activities exacerbated the worldwide human health risks induced by antibiotic resistance genes (ARGs). Knowledge of the origins and dissemination of ARGs is essential for understanding modern resistome, while little information is known regarding the overall resistance levels in urban river. In this study, the abundance of multi-resistant bacteria (MRB) and ARGs was investigated using culture-based method and high-throughput qPCR in water samples collected from urban stream and source of Jiulongjiang River, China, respectively. The abundance of MRB (conferring resistance to three combinations of antibiotics and vancomycin) was significantly higher in urban samples. A total of 212 ARGs were detected among all the water samples, which encoded resistance to almost all major classes of antibiotics and encompassed major resistant mechanisms. The total abundance of ARGs in urban samples (ranging from 9.72 × 1010 to 1.03 × 1011 copies L−1) was over two orders of magnitude higher than that in pristine samples (7.18 × 108 copies L−1), accompanied with distinct ARGs structures, significantly higher diversity, and enrichment of ARGs. Significant correlations between the abundance of ARGs and mobile genetic elements (MGEs) were observed, implicating the potential of horizontal transfer of ARGs. High abundance and enrichment of diverse ARGs and MGEs detected in urban river provide evidence that anthropogenic activities are responsible for the emergence and dissemination of ARGs to the urban river and management options should be taken into account for minimizing the spread of ARGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne bla(NDM-1) resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020. doi:10.1021/es405348h

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amos GCA, Zhang L, Hawkey PM, Gaze WH, Wellington EM (2014) Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Vet Microbiol 171(3–4):441–447. doi:10.1016/j.vetmic.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14(4):176–182. doi:10.1016/j.tim.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265. doi:10.1016/j.copbio.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  • Bockelmann U, Dorries HH, Ayuso-Gabella MN, de Marcay MS, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintgens T, Grohmann E (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75(1):154–163. doi:10.1128/aem. 01649-08

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks JP, Adeli A, McLaughlin MR (2014) Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res 57:96–103. doi:10.1016/j.watres.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  • Chagas TPG, Seki LM, Cury JC, Oliveira JAL, Davila AMR, Silva DM, Asensi MD (2011) Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol 111(3):572–581. doi:10.1111/j.1365-2672.2011.05072.x

    Article  CAS  PubMed  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38(3):1086–1108. doi:10.2134/jeq2008.0128

    Article  CAS  PubMed  Google Scholar 

  • Chen BW, Liang XM, Huang XP, Zhang T, Li XD (2013a) Differentiating anthropogenic impacts on ARGs in the pearl river estuary by using suitable gene indicators. Water Res 47(8):2811–2820. doi:10.1016/j.watres.2013.02.042

    Article  CAS  PubMed  Google Scholar 

  • Chen BW, Yang Y, Liang XM, Yu K, Zhang T, Li XD (2013b) Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol 47(22):12753–12760. doi:10.1021/es403818e

    Article  CAS  PubMed  Google Scholar 

  • Chouchani C, Marrakchi R, Henriques I, Correia A (2013) Occurrence of IMP-8, IMP-10, and IMP-13 metallo-beta-lactamases located on class 1 integrons and other extended-spectrum beta-lactamases in bacterial isolates from Tunisian rivers. Scand J Infect Dis 45(2):95–103. doi:10.3109/00365548.2012.717712

    Article  CAS  PubMed  Google Scholar 

  • Czekalski N, Berthold T, Caucci S, Egli A, Burgmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Mirobiol 3. doi:10.3389/fmicb.2012.00106

    Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417. doi:10.1128/Mmbr.00016-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. doi:10.1038/nature10388

    Article  PubMed  Google Scholar 

  • Dhara L, Tripathi A (2014) Genetic and structural insights into plasmid-mediated extended-spectrum beta-lactamase activity of CTX-M and SHV variants among pathogenic Enterobacteriaceae infecting Indian patients. Int J Antimicrob Agents 43(6):518–526. doi:10.1016/j.ijantimicag.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  • Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM (2008) A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. Fems Microbiol Lett 278(2):193–199. doi:10.1111/j.1574-6968.2007.00991.x

    Article  CAS  PubMed  Google Scholar 

  • Forslund K, Sunagawa S, Coelho LP, Bork P (2014) Metagenomic insights into the human gut resistome and the forces that shape it. Bioessays 36(3):316–329. doi:10.1002/bies.201300143

    Article  CAS  PubMed  Google Scholar 

  • Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, Stokes HW (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190(14):5095–5100. doi:10.1128/JB.00152-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. Plos Pathog 7(7) doi:10.1371/journal.ppat.1002158

  • Guo XP, Li J, Yang F, Yang J, Yin DQ (2014) Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Sci Total Environ 493:626–631. doi:10.1016/j.scitotenv.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  • Hammerum AM, Heuer OE (2009) Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 48(7):916–921. doi:10.1086/597292

    Article  CAS  PubMed  Google Scholar 

  • Hsu JT, Chen CY, Young CW, Chao WL, Li MH, Liu YH, Lin CM, Ying CW (2014) Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. J Hazard Mater 277:34–43. doi:10.1016/j.jhazmat.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  • Jia SY, He XW, Bu YQ, Shi P, Miao Y, Zhou HP, Shan ZJ, Zhang XX (2014) Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. J Environ Sci Health B 49(8):624–631. doi:10.1080/03601234.2014.911594

    Article  CAS  PubMed  Google Scholar 

  • Jiang HY, Zhang DD, Xiao SC, Geng CN, Zhang X (2013a) Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environ Sci Pollut Res 20(12):9075–9083. doi:10.1007/s11356-013-1924-2

    Article  CAS  Google Scholar 

  • Jiang L, Hu X, Xu T, Zhang H, Sheng D, Yin D (2013b) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458:267–272. doi:10.1016/j.scitotenv.2013.04.038

    Article  PubMed  Google Scholar 

  • Jiang L, Hu XL, Xu T, Zhang HC, Sheng D, Yin DQ (2013c) Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Sci Total Environ 458:267–272. doi:10.1016/j.scitotenv.2013.04.038

    Article  PubMed  Google Scholar 

  • Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxic Environ Health B 10(8):559–573. doi:10.1080/15287390600975137

    Article  CAS  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29(1):181–184. doi:10.1093/Nar/29.1.181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar A, Mukherjee S, Chakraborty R (2010) Characterization of a novel trimethoprim resistance gene, dfrA28, in class 1 integron of an oligotrophic Acinetobacter johnsonii strain, MB52, isolated from river Mahananda, India. Microb Drug Resist 16(1):29–37. doi:10.1089/mdr.2009.0111

    Article  CAS  PubMed  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. doi:10.1016/j.chemosphere.2008.11.086

    Article  PubMed  Google Scholar 

  • LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior harbor. Environ Sci Technol 45(22):9543–9549. doi:10.1021/es202775r

    Article  CAS  PubMed  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai BL, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109(5):1691–1696. doi:10.1073/pnas.1120238109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lv L, Jiang T, Zhang SH, Yu X (2014) Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environ Sci Technol 48(14):8188–8195. doi:10.1021/es501646n

    Article  CAS  PubMed  Google Scholar 

  • Ma LP, Li B, Zhang T (2014) Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl Microbiol Biotechnol 98(11):5195–5204. doi:10.1007/s00253-014-5511-3

    Article  CAS  PubMed  Google Scholar 

  • Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22(1):36–41. doi:10.1016/j.tim.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321(5887):365–367. doi:10.1126/science.1159483

    Article  CAS  PubMed  Google Scholar 

  • Monier JM, Demaneche S, Delmont TO, Mathieu A, Vogel TM, Simonet P (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14(3):229–235. doi:10.1016/j.mib.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  • Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis 56(1) doi:10.1093/cid/cis803

  • Piotrowska M, Popowska M (2014) The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann Microbiol 64(3):921–934. doi:10.1007/s13213-014-0911-2

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Schroeder CM, Meng JH, White DG, McDermott PF, Wagner DD, Yang HC, Simjee S, DebRoy C, Walker RD, Zhao SH (2005) Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. J Antimicrob Chemother 56(1):216–219. doi:10.1093/jac/dki161

    Article  CAS  PubMed  Google Scholar 

  • Stalder T, Barraud O, Jove T, Casellas M, Gaschet M, Dagot C, Ploy MC (2014) Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. ISME J 8(4):768–777. doi:10.1038/ismej.2013.189

    Article  PubMed Central  PubMed  Google Scholar 

  • Stedtfeld RD, Baushke SW, Tourlousse DM, Miller SM, Stedtfeld TM, Gulari E, Tiedje JM, Hashsham SA (2008) Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol 74(12):3831–3838. doi:10.1128/AEM. 02743-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stokes HW, Nesbo CL, Holley M, Bahl MI, Gillings MR, Boucher Y (2006) Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 188(16):5722–5730. doi:10.1128/jb.01950-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010a) Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ Sci Technol 44(6):1947–1953. doi:10.1021/es902893f

    Article  CAS  PubMed  Google Scholar 

  • Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010b) Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol 44(19):7397–7404. doi:10.1021/es101657s

    Article  CAS  PubMed  Google Scholar 

  • Su JQ, Wei B, Xu CY, Qiao M, Zhu YG (2014) Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ Int 65:9–15. doi:10.1016/j.envint.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  • Varela AR, Ferro G, Vredenburg J, Yanik M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450:155–161. doi:10.1016/j.scitotenv.2013.02.015

    Article  PubMed  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110(9):3435–3440. doi:10.1073/pnas.1222743110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21210008) and International Science & Technology Cooperation Program of China (No. 2011DFB91710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 77 kb)

ESM 2

(XLSX 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, WY., Huang, FY., Zhao, Y. et al. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl Microbiol Biotechnol 99, 5697–5707 (2015). https://doi.org/10.1007/s00253-015-6416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6416-5

Keywords

Navigation