Skip to main content
Log in

Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The roles of many sigma factors are unclear in regulatory mechanism of secondary metabolism in Streptomyces. Here, we report the regulation network of a group 3 sigma factor, WhiGch, from a natamycin industrial strain Streptomyces chattanoogensis L10. WhiGch regulates the growth and morphological differentiation of S. chattanoogensis L10. The whiG ch deletion mutant decreased natamycin production by about 30 % and delayed natamycin production more than 24 h by delaying the growth. Overexpression of the whiG ch gene increased natamycin production in large scale production medium by about 26 %. WhiGch upregulated the transcription of natamycin biosynthetic gene cluster and inhibited the expression of migrastatin and jadomycin analog biosynthetic polyketide synthase genes. WhiGch positively regulated natamycin biosynthetic gene cluster by directly binding to the promoters of scnC and scnD, which were involved in natamycin biosynthesis, and these binding sites adjacent to translation start codon were determined. Thus, this paper further elucidates the high natamycin yield mechanisms of industrial strains and demonstrates that a valuable improvement in the yield of the target metabolites can be achieved through manipulating the transcription regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsa JA, Parry HD, Chater KF (1999) A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 34(3):607–619. doi:10.1046/j.1365-2958.1999.01630.x

    Article  CAS  PubMed  Google Scholar 

  • Catakli S, Andrieux A, Decaris B, Dary A (2005) Sigma factor WhiG and its regulation constitute a target of a mutational phenomenon occurring during aerial mycelium growth in Streptomyces ambofaciens ATCC23877. Res Microbiol 156(3):328–340. doi:10.1016/j.resmic.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (1972) A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (1975) Construction and phenotypes of double sporulation deficient mutants in Streptomyces coelicolor A3(2). J Gen Microbiol 87(2):312–325

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4(6):667–673

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Bruton CJ, Plaskitt KA, Buttner MJ, Mendez C, Helmann JD (1989) The developmental fate of S.coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell 59(1):133–143. doi:10.1016/0092-8674(89)90876-3

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Lu FP, Du LX (2008) Natamycin production by Streptomyces gilvosporeus based on statistical optimization. J Agric Food Chem 56(13):5057–5061. doi:10.1021/jf800479u

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Lee EJ, Ahn BE, Roe JH (2001) SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 42(1):205–214

    Article  CAS  PubMed  Google Scholar 

  • Du YL, Chen SF, Cheng LY, Shen XL, Tian Y, Li YQ (2009) Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. J Microbiol 47(4):506–513. doi:10.1007/s12275-009-0014-0

    Article  CAS  PubMed  Google Scholar 

  • Du YL, Li SZ, Zhou Z, Chen SF, Fan WM, Li YQ (2011a) The pleitropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis. Microbiol-SGM 157:1300–1311. doi:10.1099/Mic.0.046607-0

    Article  CAS  Google Scholar 

  • Du YL, Shen XL, Yu P, Bai LQ, Li YQ (2011b) γ-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 77(23):8415–8426. doi:10.1128/Aem.05898-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • el-Enshasy HA, Farid MA, el-Sayed SA (2000) Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J Basic Microbiol 40(5–6):333–342

    Article  CAS  PubMed  Google Scholar 

  • Fink JS, Verhave M, Kasper S, Tsukada T, Mandel G, Goodman RH (1988) The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci U S A 85(18):6662–6666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Genay M, Catakli S, Kleinclauss A, Andrieux A, Decaris B, Dary A (2006) Genetic instuability of whiG gene during the aerial mycelium development of Streptomyces ambofaciens ATCC23877 under different conditions of nitrogen limitations. Mutat Res Fundam Mol Mech 595(1–2):80–90

    Article  CAS  Google Scholar 

  • Genay M, Decaris B, Dary A (2007) Implication of stringent response in the increase of mutability of the whiG and whiH genes during Streptomyces coelicolor development. Mutat Res Fundam Mol Mech 624(1–2):49–60. doi:10.1016/j.mrfmmm.2007.03.016

    Article  CAS  Google Scholar 

  • Gomez-Santos N, Perez J, Sanchez-Sutil MC, Moraleda-Munoz A, Munoz-Dorado J (2011) CorE from Myxococcus xanthus is a copper-dependent RNA polymerase sigma factor. PLoS Genet 7(6):e1002106. doi:10.1371/journal.pgen.1002106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100(4):1541–1546. doi:10.1073/pnas.0337542100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han L, Yang K, Ramalingam E, Mosher RH, Vining LC (1994) Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiol-SGM 140(12):3379–3389

    Article  CAS  Google Scholar 

  • Helmann JD (1991) Alternative sigma factors and the regulation of flagellar gene-expression. Mol Microbiol 5(12):2875–2882. doi:10.1111/j.1365-2958.1991.tb01847.x

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  CAS  PubMed  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518. doi:10.1146/annurev.micro.54.1.499

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wang YY, Ran XX, Fan WM, Jiang XH, Guan WJ, Li YQ (2013) Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Appl Environ Microbiol 79(11):3346–3354. doi:10.1128/AEM.00099-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kieser TBM, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Lim SK, Ju J, Zazopoulos E, Jiang H, Seo JW, Chen Y, Feng Z, Rajski SR, Farnet CM, Shen B (2009) iso-Migrastatin, migrastatin, and dorrigocin production in Streptomyces platensis NRRL 18993 is governed by a single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. J Biol Chem 284(43):29746–29756. doi:10.1074/jbc.M109.046805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Wu Z, Pei H, Zhou J, Xiang H (2012) Identification and characterization of the cognate anti-sigma factor and specific promoter elements of a T. tengcongensis ECF sigma factor. PLoS ONE 7(7):e40885. doi:10.1371/journal.pone.0040885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu CG, Liu WC, Qiu JY, Wang HM, Liu T, Liu DW (2008) Identification of an antifungal metabolite produced by a potential biocontrol actinomyces strain A01. Braz J Microbiol 39(4):701–707

    Article  PubMed Central  PubMed  Google Scholar 

  • Mao XM, Zhou Z, Cheng LY, Hou XP, Guan WJ, Li YQ (2009a) Involvement of SigT and RstA in the differentiation of Streptomyces coelicolor. FEBS Lett 583(19):3145–3150. doi:10.1016/j.febslet.2009.09.025

    Article  CAS  PubMed  Google Scholar 

  • Mao XM, Zhou Z, Hou XP, Guan WJ, Li YQ (2009b) Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor. J Bacteriol 191(21):6473–6481. doi:10.1128/JB.00875-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao XM, Sun N, Wang F, Luo S, Zhou Z, Feng WH, Huang FL, Li YQ (2013) Dual positive feedback regulation of protein degradation of an extra cytoplasmic function sigma factor for cell differentiation in Streptomyces coelicolor. J Biol Chem 288(43):31217–31228. doi:10.1074/jbc.M113.491498

    Article  CAS  PubMed  Google Scholar 

  • Mendez C, Chater KF (1987) Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2). J Bacteriol 169(12):5715–5720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryding NJ, Kelemen GH, Whatling CA, Flardh K, Buttner MJ, Chater KF (1998) A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 29(1):343–357. doi:10.1046/j.1365-2958.1998.00939.x

    Article  CAS  PubMed  Google Scholar 

  • Sambrook JFE, Maniatis T (2000) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santos-Aberturas J, Vicente CM, Guerra SM, Payero TD, Martin JF, Aparicio JF (2011) Molecular control of polyene macrolide biosynthesis direct binding of the regulator pimM to eight promoters of pimaricin genes and identification of binding boxes. J Biol Chem 286(11):9150–9161. doi:10.1074/jbc.M110.182428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Kelemen GH, Fernandez-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiol-SGM 145(9):2221–2227

    Article  CAS  Google Scholar 

  • Tan HR, Yang HH, Tian YQ, Wu W, Whatling CA, Chamberlin LC, Buttner MJ, Nodwell J, Chater KF (1998) The Streptomyces coelicolor sporulation-specific sigma (WhiG) form of RNA polymerase transcribes a gene encoding a ProX-like protein that is dispensable for sporulation. Gene 212(1):137–146. doi:10.1016/S0378-1119(98)00152-8

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Vining LC (2003) Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadW1, a member of the afsA family of γ-butyrolactone regulatory genes. Microbiol-SGM 149(8):1991–2004

    Article  CAS  Google Scholar 

  • Wang G, Tanaka Y, Ochi K (2010) The G243D mutation (afsB mutation) in the principal sigma factor sigma HrdB alters intracellular ppGpp level and antibiotic production in Streptomyces coelicolor A3(2). Microbiology 156(Pt 8):2384–2392. doi:10.1099/mic.0.039834-0

    Article  CAS  PubMed  Google Scholar 

  • Yeh HY, Chen TC, Liou KM, Hsu HT, Chung KM, Hsu LL, Chang BY (2011) The core-independent promoter-specific interaction of primary sigma factor. Nucleic Acids Res 39(3):913–925. doi:10.1093/nar/gkq911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng JT, Wang SL, Yang KQ (2007) Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol 76(4):883–888. doi:10.1007/s00253-007-1064-z

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang Q, Zhang S, Zhang LX (2010) Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci U S A 107(25):11250–11254. doi:10.1073/pnas.1006085107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Program of Zhejiang Provincial Natural Science Foundation of China (LZ12C01001), National Basic Research Program of China (973 Program) (No. 2012CB721005), and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120101110143). We specially thank Dr. Gerald Zvobgo for reading this paper. We sincerely thank Chris Wood for English editing and proofreading. We are grateful to Dr. Yi-Ling Du for the critical advice on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Quan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SP., Yu, P., Yuan, PH. et al. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol 99, 2715–2726 (2015). https://doi.org/10.1007/s00253-014-6307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6307-1

Keywords

Navigation