Skip to main content
Log in

Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h−1which is bettered only by pure strains in pure glycerin feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbarito F, Camarassia-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793

    Article  Google Scholar 

  • Biebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Micro Bio Biotechnol 35:701–705

    CAS  Google Scholar 

  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger BFD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, LozuponeCA MD, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas GE, Zeng AP (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112

    Article  CAS  PubMed  Google Scholar 

  • Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumonia. Process Biochem 42:740–4

    Article  CAS  Google Scholar 

  • Colin T, Bories A, Lavigne C, Moulin G (2001) Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43:238–243

    Article  CAS  PubMed  Google Scholar 

  • Dietz D, Zheng AP (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37:225–233

    Article  CAS  PubMed  Google Scholar 

  • Driessen FM (1981) Protocooperation of yogurt bacteria in continuous culture. In: Bushell ME, Slater JH (eds) Mixed culture fermentation. Academic, London, pp 99–120

    Google Scholar 

  • Gallardo R, Faria C, Rodrigues LR, Pereira MA, Alves MM (2014) Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresour Technol 155:28–33

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Pajuelo M, Andrade JC, Vasconcelos EI (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  CAS  PubMed  Google Scholar 

  • Haas MJ (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678

    Article  CAS  PubMed  Google Scholar 

  • Harrison DEF (1978) Mixed cultures in industrial fermentation processes. Adv Appl Microbiol 24:129–164

    Article  CAS  Google Scholar 

  • Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, Noshadi I (2013) Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresour Technol 136:565–573

    Article  CAS  PubMed  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Jones DT, Woods D (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118

    Article  CAS  Google Scholar 

  • Li SY, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresour Technol 102:4241–4250

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Christiansen K, Parnas RS, Xu Z, Li B (2013) Optimizing the production of hydrogen and 1, 3-propanediol in anaerobic fermentation of biodiesel glycerol. Int J Hydrog Energy 38:3196–3205

    Article  CAS  Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumonia. Enzym Microbiol Technol 20(2):82–6

    Article  CAS  Google Scholar 

  • Metsoviti M, Paraskeyajdi K, Koutinas A, Zeng AP, Papanikolaou S (2012) Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Proc Biochem 47:1872–1882

    Article  CAS  Google Scholar 

  • Montgomery DC (1996) Design and analysis of experiments. Wiley, USA

    Google Scholar 

  • Myers RH, Montgomery DC (2000) Response surface methodology: process and product optimization using designed experiments 2nd edition. Wiley, USA

    Google Scholar 

  • Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J (2014) Analysis, optimization and verification of illumina-generated 16S rRNA gene amplicon surveys. PLoS ONE 9(4):e94249

    Article  PubMed Central  PubMed  Google Scholar 

  • Nikolau BJ, Perera MA, Brachova L, Shanks B (2014) Biorenewable platform biochemicals for a biorenewable chemical industry. Plant J 54:536–545

    Article  Google Scholar 

  • Noshadi I, Amin NAS, Parnas RS (2012) Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: optimization using response surface methodology (RSM). Fuel 94:156–164

    Article  CAS  Google Scholar 

  • Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–96

    Article  CAS  Google Scholar 

  • Pomykala M, Stuart JD, Noshadi I, Parnas RS (2013) The interplay of phase equilibria and chemical kinetics in a liquid/liquid multiphase biodiesel reactor. Fuel 107:623–632

    Article  CAS  Google Scholar 

  • Qureshi N, Lolas A, Blaschek HP (2001) Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 26:290–295

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–9

    Article  CAS  PubMed  Google Scholar 

  • Rossi DA, Da Costa JB, De Souza EA, Ruaro Peralba MC, Ayub MAZ (2012) Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia. Renew Energy 39:223–227

    Article  CAS  Google Scholar 

  • Saint-Amans S, Perlot P, Goma G, Soucaille P (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 16:832–6

    Article  Google Scholar 

  • Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913

    Article  CAS  PubMed  Google Scholar 

  • Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Stewart CS (1975) Some effects of phosphate and volatile fatty acid salts on the growth of rumen bacteria. J Gen Microbiol 89:319–326

    Article  Google Scholar 

  • Tuomisto H (2012) An updated consumer’s guide to evenness and related indices. Oikos 121:1203–1218

    Article  Google Scholar 

  • Urban R, Bakshi B (2009) 1,3-propanediol from fossils versus biomass: a life cycle evaluation of emissions and ecological resources. Ind Eng Chem Res 48:8068–8082

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1, 3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–24

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH (2008) Physiological mechanism of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 100(5):923–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Joerg Graf and the Department of Molecular and Cell Biology, University of Connecticut, for their assistance in the 16S rDNA sequencing experiments. Portions of this work were supported by DOE Grant DE-EE0003116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Parnas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjilal, B., Noshadi, I., Bautista, E.J. et al. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum. Appl Microbiol Biotechnol 99, 2105–2117 (2015). https://doi.org/10.1007/s00253-014-6259-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6259-5

Keywords

Navigation