Skip to main content
Log in

Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Butenoic acid is a C4 short-chain unsaturated fatty acid mainly used in the preparation of resins, pharmaceuticals, and fine chemicals. However, butenoic acid derived from petroleum is costly and unfriendly to the environment. Here, we report a novel biosynthetic strategy to produce butenoic acid by utilizing the intermediate of fatty acid biosynthesis pathway in engineered Escherichia coli. A thioesterase gene (B. thetaiotaomicron thioesterase (bTE)) from Bacteroides thetaiotaomicron was heterologously expressed in E. coli to specifically convert butenoyl-acyl carrier protein (ACP), a fatty acid biosynthesis intermediate, to butenoic acid. The titer of butenoic acid ranged from 0.07 to 11.4 mg/L in four different E. coli strains with varied expressing vectors. Deletion of endogenous fadD gene (encoding acyl-CoA synthetase) to block fatty acid oxidation improved the butenoic acid production in all strains to some extent. The highest butenoic acid accumulation of 18.7 mg/L was obtained in strain XP-2 (BL21-∆fadD/pET28a-bTE). Moreover, partially inhibiting the enoyl-ACP reductase (FabI) of strain XP-2 by triclosan increased butenoic acid production by threefold, and the butenoic acid titer was further increased to 161.4 mg/L by supplying glucose and tryptone in the M9 medium. Fed-batch fermentation of this strain further enhanced butenoic acid production to 4.0 g/L within 48 h. The butenoic acid tolerance assay revealed that this strain could tolerate 15–20 g/L of butenoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  PubMed  Google Scholar 

  • Ai GM, Zhu JX, Dong XZ, Sun T (2013) Simultaneous characterization of methane and carbon dioxide produced by cultured methanogens using gas chromatography/isotope ratio mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 27:1935–1944

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes EM (1975) Long chain fatty acyl-thioesterases I and II from Escherichia coli. Meth Enzymol 35:102–109

    Article  PubMed  Google Scholar 

  • Barnes EM, Swindell A, Wakil SJ (1970) Purification and properties of a palmityl thioesterase II from Escherichia coli. J Biol Chem 245:3122–3128

    CAS  PubMed  Google Scholar 

  • Black PN, DiRusso C, Metzger A, Heimert T (1992) Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem 267:25513–25520

    CAS  PubMed  Google Scholar 

  • Cantu DC, Chen Y, Reilly PJ (2010) Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci 19:1281–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho H, Cronan J (1993) Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268:9238–9245

    CAS  PubMed  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cummings J, Pomare E, Branch W, Naylor C, Macfarlane G (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  CAS  PubMed  Google Scholar 

  • Dehesh K, Edwards P, Hayes T, Cranmer AM, Fillatti J (1996) Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiol 110:203–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359

    Article  CAS  PubMed  Google Scholar 

  • Escalada MG, Harwood JL, Maillard JY, Ochs D (2005) Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother 55:879–882

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  CAS  PubMed  Google Scholar 

  • Ghanta M, Fahey D, Subramaniam B (2013) Environmental impacts of ethylene production from diverse feedstocks and energy sources. Appl Petrochem Res 4:167–179

    Article  Google Scholar 

  • Handke P, Lynch SA, Gill RT (2011) Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 13:28–37

    Article  CAS  PubMed  Google Scholar 

  • He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp M18G. Biotechnol Bioeng 100:250–259

    Article  CAS  PubMed  Google Scholar 

  • Heath RJ, Rock CO (2000) Microbiology: a triclosan-resistant bacterial enzyme. Nature 406:145–146

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Li J, Zeng G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Kamens RM (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ Sci Technol 35:3626–3639

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (2005) Ethanol fermentation on the move. Nat Biotechnol 23:40–41

    Article  CAS  PubMed  Google Scholar 

  • Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jing FY, Cantu D, Tvaruzkova J, Chipman J, Nikolau B, Yandeau-Nelson M, Reilly P (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao JB, Zhao M, Yang YL, Jiang WH, Yang S (2010) Screening and characterization of butanol-tolerant micro-organisms. Lett Appl Microbiol 50:373–379

    Article  CAS  PubMed  Google Scholar 

  • Lofty WA, Ghanem KM, El-Helow ER (2007) Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour Technol 98:3470–3477

    Article  Google Scholar 

  • Lu H, Tonge PJ (2008) Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41:11–20

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Ouyang J, Li X, Lian ZN, Cai C (2012) Simultaneous determination of organic acids and saccharides in lactic acid fermentation broth from biomass using high performance liquid chromatography. Se Pu 30:62–66

    CAS  PubMed  Google Scholar 

  • Masih M, Algahtani I, De Mello L (2010) Price dynamics of crude oil and the regional ethylene markets. Energy Econ 32:1435–1444

    Article  Google Scholar 

  • McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    Article  CAS  PubMed  Google Scholar 

  • Nikolau BJ, Perera MA, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J Cell Mol Biol 54:536–545

    Article  CAS  Google Scholar 

  • Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Ann Rev Microbiol 57:155–176

    Article  CAS  Google Scholar 

  • Riesenberg D, Menzel K, Schulz V, Schumann K, Veith G, Zuber G, Knorre WA (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Microbiol Biotechnol 34:77–82

    Article  CAS  PubMed  Google Scholar 

  • Rollat I, Samain H, Morel O (2006) Reshapable hair styling composition comprising (meth)acrylic copolymers of four or more monomers. US 07122175

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Saraydin D, Karadag E, Guven O (1998) The releases of agrochemicals from radiation induced acrylamide crotonic acid hydrogels. Polym Bull 41:577–584

    Article  CAS  Google Scholar 

  • Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198

    Article  CAS  PubMed  Google Scholar 

  • Schulz RP, Blumenstein J, Kohlpaintner C (2000) Crotonaldehyde and crotonic acid. Ullmann’s encyclopedia of chemical technology. Wiley, Weinheim

    Google Scholar 

  • Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M (2009) Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Thomason LC, Costantino N, Court DL (2007) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 79:1.17.11–11.17.18

    Google Scholar 

  • Torella JP, Ford TJ, Kim SN, Chen AM, Way JC, Silver PA (2013) Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci U S A 110:11290–11295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsay J-T, Oh W, Larson T, Jackowski S, Rock C (1992) Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267:6807–6814

    CAS  PubMed  Google Scholar 

  • Vanderheide E, Zwinkels M, Gerritsen A, Scholten J (1992) Oxidation of ethylene to acetaldehyde over a heterogenized surface-vanadate wacker catalyst in the absence of gaseous oxygen. Appl Catal A Gen 86:181–198

    Article  CAS  Google Scholar 

  • Verwoert I, Verbree E, Van der Linden K, Nijkamp H, Stuitje A (1992) Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol 174:2851–2857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wakaki S, Yamamoto T, Enoki H (2008) Stabilizing agent for chlorine containing polymer used for chlorine containing polymer composition, contains epoxy-group containing acrylic resin, amino crotonic-acid ester, polyhydric alcohol and/or hindered amine or phenyl indole. WO2008087784-A1; JP2008195912-A; JP5192182-B2

  • Wang Z, Yan M, Chen X, Li DS, Qin L, Li ZJ, Yao J, Liang XL (2013) Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochem Eng J 79:41–45

    Article  CAS  Google Scholar 

  • Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci U S A 92:10639–10643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeiller J-J, Dumas H, Guyard-Dangremont V, Berard I, Contard F, Guerrier D, Ferrand G, Bonhomme Y (2012) Butenoic acid derivatives, processes for the preparation thereof, pharmaceutical compositions comprising them, and use for the treatment of dyslipidaemia, atherosclerosis and diabetes. US 08247448

  • Zhang XJ, Li M, Agrawal A, San KY (2011) Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 13:713–722

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M (2012) Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 5:76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170040, 31200081) and Chinese Academy of Sciences (KGZD-EW-606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yu, H., Jiang, X. et al. Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli . Appl Microbiol Biotechnol 99, 1795–1804 (2015). https://doi.org/10.1007/s00253-014-6233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6233-2

Keywords

Navigation