Skip to main content

Advertisement

Log in

A new member of the DMATS superfamily from Aspergillus niger catalyzes prenylations of both tyrosine and tryptophan derivatives

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A putative prenyltransferase gene of the dimethylallyltryptophan synthase (DMATS) family, An13g01840, was identified in the genome sequence of Aspergillus niger. The deduced polypeptide CAK41583 consists of 465 amino acids with a calculated molecular mass of 52.7 kDa. To evaluate gene function, the coding sequence was cloned into pET28a and overexpressed in Escherichia coli. The soluble His6-fusion protein was purified to near homogeneity on Ni-NTA agarose and used for enzyme assays with diverse aromatic substrates in the presence of dimethylallyl diphosphate. HPLC analysis revealed product formation in the incubation mixtures with l-tyrosine and five derivatives thereof. Structure elucidation of the enzyme products by NMR and MS analyses confirmed O-prenylations and proved the identification of a tyrosine O-prenyltransferase (TyrPT). As in the case of SirD from Leptosphaeria maculans, TyrPT also accepted 4-amino-l-phenylalanine for an N-prenylation and l-tryptophan for a C7-prenylation. The K M values of TyrPT for l-tyrosine, l-tryptophan, and dimethylallyl diphosphate (DMAPP) were found to be 0.24, 0.19, and 0.71 mM, respectively. The k cat of l-tyrosine and l-tryptophan reactions were determined at 0.58 and 0.0053 s−1, respectively. The results presented in this study enhance the relationship of tyrosine O- and tryptophan C7-prenyltranferases and provide meanwhile a new enzyme for production of prenylated derivatives. In comparison to the known tyrosine prenyltransferase SirD, TyrPT showed significantly higher catalytic activity for several substrates, e.g., 4-amino-l-phenylalanine as well as 4- and 5-methyl-DL-tryptophan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Botta B, Vitali A, Menendez P, Misiti D, Delle MG (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:717–739

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MS, Howlett BJ (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Heide L (2009) Prenyl transfer to aromatic substrates: genetics and enzymology. Curr Opin Chem Biol 13:171–179

    Article  CAS  PubMed  Google Scholar 

  • Kremer A, Li S-M (2008) Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Appl Microbiol Biotechnol 79:951–961

    Article  CAS  PubMed  Google Scholar 

  • Kremer A, Li S-M (2010) A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. Microbiology 156:278–286

    Article  CAS  PubMed  Google Scholar 

  • Kremer A, Westrich L, Li S-M (2007) A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology 153:3409–3416

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li S-M (2009) Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products. Appl Microbiol Biotechnol 84:631–639

    Article  CAS  PubMed  Google Scholar 

  • Li S-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    Article  PubMed  Google Scholar 

  • Miyamoto K, Ishikawa F, Nakamura S, Hayashi Y, Nakanishi I, Kakeya H (2014) A 7-dimethylallyl tryptophan synthase from a fungal Neosartorya sp.: biochemical characterization and structural insight into the regioselective prenylation. Bioorg Med Chem 22:2517–2528

    Article  CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Rudolf JD, Poulter CD (2013) Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives. ACS Chem Biol 8:2707–2714

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Steffan N, Li S-M (2009) Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase. Arch Microbiol 191:461–466

    Article  CAS  PubMed  Google Scholar 

  • Steffan N, Unsöld IA, Li S-M (2007) Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus. Chembiochem 8:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Steffan N, Grundmann A, Yin W-B, Kremer A, Li S-M (2009) Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem 16:218–231

    Article  CAS  PubMed  Google Scholar 

  • Winkelblech J, Li S-M (2014) Biochemical investigations of two 6-DMATS enzymes from Streptomyces revealing novel features of L-tryptophan prenyltransferases. Chembiochem 15:1030–1039

    Article  CAS  PubMed  Google Scholar 

  • Wollinsky B, Ludwig L, Hamacher A, Yu X, Kassack MU, Li S-M (2012a) Prenylation at the indole ring leads to a significant increase of cytotoxicity of tryptophan-containing cyclic dipeptides. Bioorg Med Chem Lett 22:3866–3869

    Article  CAS  PubMed  Google Scholar 

  • Wollinsky B, Ludwig L, Xie X, Li S-M (2012b) Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1. Org Biomol Chem 10:9262–9270

    Article  CAS  PubMed  Google Scholar 

  • Woodside AB, Huang Z, Poulter CD (1988) Trisammonium geranyl diphosphate. Org Synth 66:211–215

    Article  CAS  Google Scholar 

  • Yin W-B, Baccile JA, Bok JW, Chen Y, Keller NP, Schroeder FC (2013) A nonribosomal peptide synthetase-derived iron(III) complex from the pathogenic fungus Aspergillus fumigatus. J Am Chem Soc 135:2064–2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu X, Li S-M (2012) Prenyltransferases of the dimethylallyltryptophan synthase superfamily. Methods Enzymol 516:259–278

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Liu Y, Xie X, Zheng X-D, Li S-M (2012) Biochemical characterization of indole prenyltransferases: filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. J Biol Chem 287:1371–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou H-X, Xie X, Zheng X-D, Li S-M (2011) The tyrosine O-prenyltransferase SirD catalyzes O-, N-, and C-prenylations. Appl Microbiol Biotechnol 89:1443–1451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Michael Müller (Freiburg, Germany) for providing the A. niger strain, Lena Ludwig for synthesis of DMAPP, and Nina Zitzer and Stefan Newel for taking MS and NMR spectra, respectively. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (Li844/4-1 to S.-M. L.) and by a PPP program of Deutscher Akademischer Austauschdienst and China scholarship council (to S.-M. L. and H.X.). Aili Fan is a recipient of a scholarship from China scholarship council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, A., Chen, H., Wu, R. et al. A new member of the DMATS superfamily from Aspergillus niger catalyzes prenylations of both tyrosine and tryptophan derivatives. Appl Microbiol Biotechnol 98, 10119–10129 (2014). https://doi.org/10.1007/s00253-014-5872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5872-7

Keywords

Navigation