Skip to main content
Log in

Impact of protein uptake and degradation on recombinant protein secretion in yeast

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Protein titers, a key bioprocessing metric, depend both on the synthesis of protein and the degradation of protein. Secreted recombinant protein production in Saccharomyces cerevisiae is an attractive platform as minimal media can be used for cultivation, thus reducing fermentation costs and simplifying downstream purification, compared to other systems that require complex media. As such, engineering S. cerevisiae to improve titers has been then the subject of significant attention, but the majority of previous efforts have been focused on improving protein synthesis. Here, we characterize the protein uptake and degradation pathways of S. cerevisiae to better understand its impact on protein secretion titers. We do find that S. cerevisiae can consume significant (in the range of 1 g/L/day) quantities of whole proteins. Characterizing the physiological state and combining metabolomics and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion systems, and the current data should help formulate strategies to mitigate product loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badawy AAB, Morgan CJ, Turner JA (2008) Application of the Phenomenex EZ:faastTM amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. Amino Acids 34(4):587–596. doi:10.1007/s00726-007-0012-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111. doi:10.1016/j.ymben.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  • Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81(17):7379–7389. doi:10.1021/Ac900999t

    Article  CAS  PubMed  Google Scholar 

  • De Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204(1):118–123

    Article  PubMed  Google Scholar 

  • De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7(4):313–323. doi:10.1002/yea.320070402

    Article  PubMed  Google Scholar 

  • Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J (2012a) Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng 14(2):120–127. doi:10.1016/j.ymben.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012b) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510. doi:10.1111/j.1567-1364.2012.00810.x

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Gore PR, Shusta EV (2008) Increasing yeast secretion of heterologous proteins by regulating expression rates and post-secretory loss. Biotechnol Bioeng 101(6):1264–1275. doi:10.1002/bit.22019

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417. doi:10.1007/s00253-010-2447-0

    Article  CAS  PubMed  Google Scholar 

  • Kugler F, Graneis S, Schreiter PPY, Stintzing FC, Carle R (2006) Determination of free amino compounds in betalainic fruits and vegetables by gas chromatography with flame ionization and mass spectrometric detection. J Agric Food Chem 54(12):4311–4318. doi:10.1021/Jf060245g

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Liang Y, Dunn WB, Shen H, Kell DB (2008) Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27(3):215–227

    Article  CAS  Google Scholar 

  • Oliveira AP, Patil KR, Nielsen J (2008) Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol 2(1):17

    Article  PubMed Central  PubMed  Google Scholar 

  • Patil KR, Nielsen J (2005a) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685–2689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patil KR, Nielsen J (2005b) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685–2689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pelham HR (2002) Insights from yeast endosomes. Curr Opin Cell Biol 14(4):454–462

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193. doi:10.1016/S0076-6879(06)11009-5

    Article  CAS  PubMed  Google Scholar 

  • Shaw JD, Cummings KB, Huyer G, Michaelis S, Wendland B (2001) Yeast as a model system for studying endocytosis. Exp Cell Res 271(1):1–9. doi:10.1006/excr.2001.5373

    Article  CAS  PubMed  Google Scholar 

  • Snel L, Damgaard U (1988) Proinsulin heterogeneity in pigs. Horm Metab Res 20(8):476–480. doi:10.1055/s-2007-1010862

    Article  CAS  PubMed  Google Scholar 

  • Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol 10:16. doi:10.1186/1741-7007-10-16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl Environ Microbiol 72(9):6194–6203. doi:10.1128/Aem.00548-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin MLF, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym Microb Technol 26(9–10):706–714

    Article  Google Scholar 

  • Weinberg J, Drubin DG (2012) Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 22(1):1–13. doi:10.1016/j.tcb.2011.09.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Chang A, Kjeldsen TB, Arvan P (2001) Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153(6):1187–1198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Sherer for assistance with yeast growth and protein assays. We thank NIH Kirschstein NRSA fellowship, The Knut and Alice Wallenberg Foundation, EU Framework VII project SYSINBIO (Grant no. 212766), European Research Council project INSYSBIO (Grant no. 247013), the Novo Nordisk Foundation, and the Chalmers Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyo, K.E.J., Liu, Z., Magnusson, Y. et al. Impact of protein uptake and degradation on recombinant protein secretion in yeast. Appl Microbiol Biotechnol 98, 7149–7159 (2014). https://doi.org/10.1007/s00253-014-5783-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5783-7

Keywords

Navigation