Skip to main content
Log in

Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP+/NADPH-dependent enzymes. Recently, we reported a novel NAD+/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asako H, Wakita R, Matsumura K, Shimizu M, Sakai J, Itoh N (2005) Purification and cDNA cloning of NADPH-dependent aldoketoreductase, involved in asymmetric reduction of methyl 4-bromo-3-oxobutyrate, from Penicillium citrinum IFO4631. Appl Environ Microbiol 71:1101–1104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asako H, Shimizu M, Itoh N (2008) Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity. Appl Microbiol Biotechnol 80:805–812

    Article  PubMed  CAS  Google Scholar 

  • Bahulekar R, Ayyangar NR, Ponrathnam S (1991) Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb Technol 13:858–868

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw CW, Fu H, Shen GJ, Wong CH (1992b) A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57:1526–1532

    Article  CAS  Google Scholar 

  • Bradshow CW, Hummel W, Wong CH (1992a) Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J Org Chem 57:1532–1536

    Article  Google Scholar 

  • Ehrensberger AH, Elling RA, Wilson DK (2006) Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity. Structure 14:567–575

    Article  PubMed  CAS  Google Scholar 

  • Feil IK, Hendle J, Schomburg D (1997) Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering. Protein Eng 10:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Xu Y (2006) Anti-Prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system. Biotechnol Lett 28:1115–1119

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:1–8

    Article  CAS  Google Scholar 

  • Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145–184

    PubMed  CAS  Google Scholar 

  • Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1–13

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Makino Y, Itoh N (2005a) Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl Environ Microbiol 71:3633–3641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inoue K, Makino Y, Itoh N (2005b) Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). Tetrahedron Asymmetry 16:2539–2549

    Article  CAS  Google Scholar 

  • Inoue K, Makino Y, Dairi T, Itoh N (2006) Gene cloning and expression of Leifsonia alcohol dehydrogenase (LSADH) involved in asymmetric hydrogen-transfer bioreduction to produce (R)-form chiral alcohols. Biosci Biotechnol Biochem 70:418–426

    Article  PubMed  CAS  Google Scholar 

  • Isotani K, Kurokawa J, Itoh N (2012) Production of (R)-3-quinuclidinol by E. coli biocatalysts possessing NADH-dependent 3-quinuclidinone reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia alcohol dehydrogenase (LSADH). Int J Mol Sci 13:13542–13553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Itoh N, Makino Y (2013) Protein engineering: development of novel enzymes for the improved reduction of C = O double bonds. In: Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 139–185

    Chapter  Google Scholar 

  • Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269:2394–2402

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Nakamura M, Inoue K, Makino Y (2007) Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction. Appl Microbiol Biotechnol 75:1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Isotani K, Nakamura M, Inoue K, Isogai Y, Makino Y (2012) Efficient synthesis of optically pure alcohols by asymmetric hydrogen-transfer biocatalysis: application of engineered enzymes in a 2-propanol-water medium. Appl Microbiol Biotechnol 93:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Isotani K, Makino Y, Kato M, Kitayama K, Ishimota T (2014) PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis. Enzyme Microb Technol 50:140–150

    Article  CAS  Google Scholar 

  • Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Domı´nguez MP (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47:12230–12232

    Article  CAS  Google Scholar 

  • Jörnvall H, Hedlund J, Bergman T, Oppermann U, Persson B (2010) Superfamilies SDR and MDR: from early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities. Biochem Biophys Res Commun 396:125–130

    Article  PubMed  CAS  Google Scholar 

  • Kaluzna IA, Matsuda T, Sewell AK, Stewart JD (2004) Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J Am Chem Soc 126:12827–12832

    Article  PubMed  CAS  Google Scholar 

  • Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70:342–345

    Article  PubMed  CAS  Google Scholar 

  • Kara S, Schrittwieser JH, Hollmann F (2013) Strategies for cofactor regeneration in biocatalyzed reductions. In:Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 209–238

    Book  Google Scholar 

  • Kita K, Fukura T, Nakase KI, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999a) Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydro xybutanoate. Appl Environ Microbiol 65:5207–5211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kita K, Nakase K, Yanase H, Kataoka M, Shimizu S (1999b) Purification and characterization of new aldehyde reductases from Sporobolomyces salmonicolor AKU4429. J Mol Catal B Enzym 6:305–313

    Article  CAS  Google Scholar 

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003a) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003b) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advance in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  PubMed  CAS  Google Scholar 

  • Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430

    Article  PubMed  CAS  Google Scholar 

  • Lamed RJ, Keinan E, Zeikus JG (1981) Potential applications of an alcohol-aldehyde/ketone oxidoreductase from thermophilic bacteria. Enzyme Mircob Technol 3:144–148

    Article  CAS  Google Scholar 

  • Lefevre F, Jarrin C, Ginolhac A, Auriol D, Nalin R (2007) Environmental metagenomics: an innovative resource for industrial biocatalysis. Biocatal Biotrans 25:242–250

    Article  CAS  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature 3:510–516

    CAS  Google Scholar 

  • Makino Y, Dairi T, Itoh N (2007) Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol. Appl Microbiol Biotechnol 77:833–843

    Article  PubMed  CAS  Google Scholar 

  • Martín-Matute B, Edin M, Bogár K, Kaynak FB, Bäckvall JE (2005) Combined ruthenium(II) and lipase catalysis for efficient dynamic kinetic resolution of secondary alcohol: insight into the racemization mechanism. J Am Chem Soc 127:8817–8825

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetry 20:513–557

    Article  CAS  Google Scholar 

  • Matsuyama A, Yamamoto H, Kobayashi Y (2002) Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical such as chiral alcohols. Org Process Res Dev 6:558–561

    Article  CAS  Google Scholar 

  • Meng F, Xu Y (2010) Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol. Biotechnol Lett 32:533–537

    Article  PubMed  CAS  Google Scholar 

  • Moon HJ, Tiwar MK, Singh R, Kang YC, Lee JK (2012) Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase. Appl Environ Microbiol 78:3079–3086

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morikawa S, Nakai T, Yasohara Y, Namba H, Kizaki N, Hasegawa J (2005) Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem 69:544–552

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Xu Y, Mu XQ, Wang HY, Yang M, Xiao R (2007) Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from Candida parapsilosis. Appl Environ Microbiol 73:3759–3764

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley, New York

    Google Scholar 

  • Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40–73

    Article  CAS  Google Scholar 

  • Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, Jörnvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U (2009) The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biol Interact 178:94–98

    Article  CAS  Google Scholar 

  • Prelog V (1964) Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl Chem 9:119–130

    Article  CAS  Google Scholar 

  • Rocha-Martin J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F (2012) Characterization and further stabilization of a new anti-Prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresour Technol 103:343–350

    Article  PubMed  CAS  Google Scholar 

  • Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349: 801–813

    Google Scholar 

  • Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Nonaka T, Nakanishi M, Deyashiki Y, Hara A, Mitsui Y (1996) Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 Å resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure 4:33–45

    Article  PubMed  CAS  Google Scholar 

  • Tasnádi G, Hall M (2013) Relevant practical applications of bioreduction processes in the synthesis of active pharmaceutical ingredients. In: Brenna E (ed) Synthetic methods for biologically active molecules. Wiley, Weinheim, pp 329–374

    Chapter  Google Scholar 

  • Toda H, Imae R, Itoh N (2012) Efficient biocatalysis for the production of enantiopure (S)-epoxides using styrene monooxygenase (SMO) and Leifsonia alcohol dehydrogenase (LSADH) system. Tetrahedron Asymmetry 23:1542–1549

    Article  CAS  Google Scholar 

  • Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding gene. Appl Environ Microbiol 76:7029–7035

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci Biotechnol Biochem 62:280–285

    Article  PubMed  CAS  Google Scholar 

  • Wallner SR, Lavandera I, Mayer SF, Ohrlein R, Hafner A, Edegger K, Faber K, Kroutil W (2008) Stereoselective anti-Prelog reduction of ketones by whole cells of Comamonas testosteroni in a ‘substrate-coupled’ approach. J Mol Catal B Enzym 55:126–129

    Article  CAS  Google Scholar 

  • Wang Q, Wu H, Wang A, Du P, Pei X, Li H, Yin X, Huang L, Xiong X (2010) Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J Biol Chem 285:41509–41516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weckbecker A, Hummel W (2006) Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal Biotrans 24:380–389

    Article  CAS  Google Scholar 

  • Weinhold EG, Benner SA (1995) Engineering yeast alcohol dehydrogenase: replacing Trp54 by Leu broadens substrate specificity. Protein Eng Des Sel 8:457–461

    Article  CAS  Google Scholar 

  • Wong CH, Whitesides G (1994) Enzymes in synthetic organic chemistry. Pergamon, Oxford

    Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa S, Takahashi S, Wada M, Kataoka M, Shimizu S (2000) Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. Biosci Biotechnol Biochem 64:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 193:3009–3019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z (2008) Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 17:1412–1423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang R, Geng Y, Xu Y, Zhang W, Wang S, Xiao R (2011) Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. Bioresour Technol 102:483–489

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuya Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, N. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol 98, 3889–3904 (2014). https://doi.org/10.1007/s00253-014-5619-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5619-5

Keywords

Navigation