Skip to main content

Advertisement

Log in

Towards molecular, physiological, and biochemical understanding of photosynthetic inhibition and oxidative stress in the toxic Alexandrium tamarense induced by a marine bacterium

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Alexandrium tamarense is a notorious harmful algal bloom species, which is associated with the largest number of paralytic shellfish poisoning cases, causing devastating economic losses and health hazards. The marine bacterium Mangrovimonas yunxiaonensis strain LY01 showed high algicidal effects on A. tamarense. A. tamarense was also susceptible to the supernatant of LY01 as revealed by algicidal activity assay, but washed bacterial cells did not show algicidal activity towards A. tamarense. In this study, we investigated the algicidal effect of the supernatant on growth, photosynthesis and the antioxidative response of A. tamarense. The results indicated that under the algicidal effect of the supernatant, the contents of cellular pigments including chlorophyll a and carotenoids were significantly decreased, and the decline of the maximum quantum yield and relative electron transport rate values suggested that photosynthetic inhibition occurred in the photosystem II system. The content of reactive oxygen species (ROS) increased after 0.5 h exposure, and the surplus ROS induced lipid peroxidation, the destruction of cellular membrane integrity and decreased cellular protein and carbohydrate contents in the algal cells. At the same time, the supernatant also induced the responses of antioxidant enzymes and non-enzymatic antioxidant. The transcription of photosynthesis- and respiration-related genes were significantly inhibited during the exposure procedure, which obstructed photosynthetic efficiency and capacity and disturbed the respiratory system, thereby increasing ROS production again. All these results elaborate clearly the entire procedure by which cellular physiological levels respond to the algicidal bacterium and may contribute to a better understanding of the bacterial control of A. tamarense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  PubMed  CAS  Google Scholar 

  • Ajani P, Brett S, Krogh M, Scanes P, Webster G, Armand L (2012) The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia. Environ Monit Assess 185(6):1–22

    Google Scholar 

  • Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro E-M (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta Bioenerg 1709(1):69–83

    Article  CAS  Google Scholar 

  • Amaro AM, Fuentes MS, Ogalde SR, Venegas JA, SUÁREZ-ISLA BA (2005) Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J Eukaryot Microbiol 52(3):191–200

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asakawa M, Miyazawa K, Takayama H, Noguchi T (1995) Dinoflagellate Alexandrium tamarense as the source of paralytic shellfish poison (PSP) contained in bivalves from Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon 33(5):691–697

    Article  PubMed  CAS  Google Scholar 

  • Bayr H (2005) Reactive oxygen species. Crit Care Med 33(12):S498–S501

    Article  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100(6):3525–3530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  Google Scholar 

  • Churro C, Fernandes A, Alverca E, Sam-Bento F, Paulino S, Figueira V, Bento A, Prabhakar S, Lobo A, Martins L (2010) Effects of tryptamine on growth, ultrastructure, and oxidative stress of cyanobacteria and microalgae cultures. Hydrobiologia 649(1):195–206

    Article  CAS  Google Scholar 

  • Draper HH, Hadley M (1989) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Google Scholar 

  • Franks P, Anderson D (1992) Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Mar Biol 112(1):153–164

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  PubMed  CAS  Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. Culture of marine invertebrate animals. Springer, pp 29–60

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamasaki K, Horie M, Tokimitsu S, Toda T, Taguchi S (2001) Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J Plankton Res 23(3):271–278

    Article  CAS  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10

    Article  Google Scholar 

  • Hathaway JM, Moore TL, Burkholder JM, Hunt WF (2012) Temporal analysis of stormwater control measure effluent based on windows of harmful algal bloom (HAB) sensitivity: are annual nutrient EMCs appropriate during HAB-sensitive seasons? Ecol Eng 49:41–47

    Article  Google Scholar 

  • Higman WA, Stone DM, Lewis JM (2001) Sequence comparisons of toxic and non-toxic Alexandrium tamarense (Dinophyceae) isolates from UK waters. Phycologia 40(3):256–262

    Article  Google Scholar 

  • Hong Y, Hu H-Y, Xie X, Sakoda A, Sagehashi M, Li F-M (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269

    Article  PubMed  CAS  Google Scholar 

  • Ichimi K, Suzuki T, Ito A (2002) Variety of PSP toxin profiles in various culture strains of Alexandrium tamarense and change of toxin profile in natural A. tamarense population. J Exp Mar Biol Ecol 273(1):51–60

    Article  CAS  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. Plant Physiol 77(2):483–485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaplan F, Lewis LA, Herburger K, Holzinger A (2012) Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron 44(2–2):317–330

    PubMed  Google Scholar 

  • Kim Y-M, Wu Y, Duong TU, Jung S-G, Kim SW, Cho H, Jin E (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar Biotechnol 14(3):312–322

    Article  PubMed  CAS  Google Scholar 

  • Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phycol 14(2):109–114

    Google Scholar 

  • Kudernac T, Lei S, Elemans JA, De Feyter S (2009) Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chem Soc Rev 38(2):402–421

    Article  PubMed  CAS  Google Scholar 

  • Laanaia N, Vaquer A, Fiandrino A, Genovesi B, Pastoureaud A, Cecchi P, Collos Y (2013) Wind and temperature controls on Alexandrium blooms (2000–2007) in Thau lagoon (Western Mediterranean). Harmful Algae 28:31–36

    Article  Google Scholar 

  • Lee T, Nakano K, Matsumara M (2001) Ultrasonic irradiation for blue-green algae bloom control. Environ Technol 22(4):383–390

    Article  PubMed  CAS  Google Scholar 

  • Lewitus AJ, Horner RA, Caron DA, Garcia-Mendoza E, Hickey BM, Hunter M, Huppert DD, Kudela RM, Langlois GW, Largier JL (2012) Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae 19:133–159

    Article  Google Scholar 

  • Li Y, Bai S, Yang C, Lai Q, Zhang H, Chen Z, Wei J, Zheng W, Tian Y, Zheng T (2013) Mangrovimonas yunxiaonensis gen. nov., sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 63(Pt 6):2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Liu Z-J, Zhang X-L, Bai J-G, Suo B-X, Xu P-L, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hortic 121(2):138–143

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Marder J, Chapman D, Telfer A, Nixon P, Barber J (1987) Identification of psbA and psbD gene products, D1 and D2, as reaction centre proteins of photosystem 2. Plant Mol Biol 9(4):325–333

    Article  PubMed  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72

    Article  PubMed  CAS  Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Müller C (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 107(5):2331–2336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51(2):139–144

    Article  PubMed  Google Scholar 

  • McLean TI, Sinclair GA (2013) Harmful algal blooms environmental toxicology. Springer, pp 319–360

  • Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C (2013) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem. doi:10.1074/jbc.M112.423681

    PubMed  Google Scholar 

  • Mitsutani A, Yamasaki I, Kitaguchi H, Kato J, Ueno S, Ishida Y (2001) Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia 40(3):286–291

    Article  Google Scholar 

  • Miyata T, Cvy D s, Kurokawa K, Baynes JW (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55(2):389–399

    Article  PubMed  CAS  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS ONE 4(11):e7743

    Article  PubMed Central  PubMed  Google Scholar 

  • Paul C, Pohnert G (2013) Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. PLoS ONE 8(3):e57577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peñuelas J, Ribas-Carbo M, Giles L (1996) Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J Chem Ecol 22(4):801–805

    Article  PubMed  Google Scholar 

  • Pokrzywinski KL, Place AR, Warner ME, Coyne KJ (2012) Investigation of the algicidal exudate produced by Shewanella sp. IRI-160 and its effect on dinoflagellates. Harmful Algae 19:23–29

    Article  CAS  Google Scholar 

  • Qian H, Li J, Pan X, Jiang H, Sun L, Fu Z (2010) Photoperiod and temperature influence cadmium’s effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicol Environ Saf 73(6):1202–1206

    Article  PubMed  CAS  Google Scholar 

  • Santabarbara S, Casazza AP, Ali K, Economou CK, Wannathong T, Zito F, Redding KE, Rappaport F, Purton S (2013) The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii. Plant Physiol 161(1):535–546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72(4):1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Siswanto E, Ishizaka J, Tripathy SC, Miyamura K (2013) Detection of harmful algal blooms of Karenia mikimotoi using MODIS measurements: a case study of Seto-Inland Sea, Japan. Remote Sens Environ 129:185–196

    Article  Google Scholar 

  • Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6(6):799–810

    Article  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028

    PubMed  CAS  Google Scholar 

  • Tobe SS, Kitchener AC, Linacre AM (2010) Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE 5(11):e14156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valenzuela-Espinoza E, Millán-Núñez R, Núñez-Cebrero F (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacult Eng 25(4):207–216

    Article  Google Scholar 

  • Viktoria B, Grigorszky I, Vasas G, Borics G, Várbíró G, Nagy SA, Borbély G, Bácsi I (2012) The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? Hydrobiologia 691(1):97–107

    Article  Google Scholar 

  • Wang B, Zhou Y, Bai S, Su J, Tian Y, Zheng T, Yang X (2010) A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense. Lett Appl Microbiol 51(5):552–557

    Article  PubMed  CAS  Google Scholar 

  • Yang C-Y, Liu S-J, Zhou S-W, Wu H-F, Yu J-B, Xia C-H (2011) Allelochemical ethyl 2-methyl acetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylum tricornutum. Pestic Biochem Physiol 100(1):93–103

    Article  CAS  Google Scholar 

  • Yang C, Zhou J, Liu S, Fan P, Wang W, Xia C (2013) Allelochemical induces growth and photosynthesis inhibition, oxidative damage in marine diatom Phaeodactylum tricornutum. J Exp Mar Biol Ecol 444:16–23

    Article  CAS  Google Scholar 

  • Zhang H, An X, Zhou Y, Zhang B, Zhang S, Li D, Chen Z, Li Y, Bai S, Lv J, Tian Y, Zheng T (2013) Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species—Alexandrium tamarense. PLoS ONE 8(5):e63018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X, Zhou Y, Wang H, Yang X, Su J (2012) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol 97(20):9207–9215

    Google Scholar 

  • Zhou L, Zheng T, Wang X, Ye J, Tian Y, Hong H (2007) Effect of five Chinese traditional medicines on the biological activity of a red-tide causing alga—Alexandrium tamarense. Harmful Algae 6(3):354–360

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation (40930847, 41376119), Public Science and Technology Research Funds for Projects on the Ocean (201305016, 201305022), Special Fund for Ph.D. Program in University (20120121130001) and Science and Technology Innovation Funds of Shenzhen (JCYJ20120615161239998). We also thank Prof. I. J. Hodgkiss of The University of Hong Kong for help with English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojing Xiong or Tianling Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhu, H., Guan, C. et al. Towards molecular, physiological, and biochemical understanding of photosynthetic inhibition and oxidative stress in the toxic Alexandrium tamarense induced by a marine bacterium. Appl Microbiol Biotechnol 98, 4637–4652 (2014). https://doi.org/10.1007/s00253-014-5578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5578-x

Keywords

Navigation